-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsimple_propagation.py
216 lines (189 loc) · 8.01 KB
/
simple_propagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
from utils import *
from lie_group_utils import SO3, SE3_2
from preintegration_utils import *
import matplotlib.pyplot as plt
plt.rcParams["legend.loc"] = "upper right"
plt.rcParams['axes.titlesize'] = 'x-large'
plt.rcParams['axes.labelsize'] = 'x-large'
plt.rcParams['legend.fontsize'] = 'x-large'
plt.rcParams['xtick.labelsize'] = 'x-large'
plt.rcParams['ytick.labelsize'] = 'x-large'
plt.rcParams['text.usetex'] =True
params= {'text.latex.preamble' : [r'\usepackage{amsmath}',
r'\usepackage{amssymb}']}
import numpy as np
import scipy.linalg
torch.set_default_dtype(torch.float64)
torch.manual_seed(0)
def propagate(T0, Sigma, Upsilon, Q, method, dt, g):
"""Propagate state for one time step"""
Gamma = f_Gamma(g, dt)
Phi = f_flux(T0, dt)
# propagate the mean
T = Gamma.mm(Phi).mm(Upsilon)
# Jacobian for propagating prior along time
F = torch.eye(9)
F[6:9, 3:6] = torch.eye(3)*dt
# compute Adjoint of right transformation mean
AdUps = SE3_2.uAd(SE3_2.uinv(Upsilon))
Sigma_tmp = axat(AdUps.mm(F), Sigma)
# compound the covariances based on the second-order method
Sigma_prop = Sigma_tmp + Q
if method == 1:
# add fourth-order method
Sigma_prop += four_order(Sigma_tmp, Q)
elif method == 2:
# SO(3) x R^6
wedge_acc = SO3.uwedge(Upsilon[:3, 3]) # already multiplied by dt
F = torch.eye(9)
F[3:6, :3] = T0[:3, :3].t()
F[3:6, :3] = -T0[:3, :3].mm(wedge_acc)
F[6:9, :3] = F[3:6, :3]*dt/2
F[6:9, 3:6] = dt*torch.eye(3)
G = torch.zeros(9, 6)
G[:3, :3] = dt*T0[:3, :3].t()
G[3:6, 3:6] = T0[:3, :3]*dt
G[6:9, 3:6] = 1/2*T0[:3, :3]*(dt**2)
Sigma_prop = axat(F, Sigma) + axat(G, Q[:6, :6]/(dt**2))
Sigma_prop = (Sigma_prop + Sigma_prop.t())/2 # symmetric
return T, Sigma_prop
def plot_se23_helper(T_est, P_est, v, color, i1, i2):
"""
Draw ellipse based on the 3 more important directions of the covariance
"""
D, V = torch.eig(P_est, eigenvectors=True)
Y, I = torch.sort(D[:, 0], descending=True)
a = sigma*D[I[0], 0].sqrt() * V[:, I[0]]
b = sigma*D[I[1], 0].sqrt() * V[:, I[1]]
c = sigma*D[I[2], 0].sqrt() * V[:, I[2]]
for n in range(3):
if n == 0:
xi = a*v.sin() + b*v.cos()
elif n == 1:
xi = b*v.sin() + c*v.cos()
elif n == 2:
xi = a*v.sin() + c*v.cos()
Ttemp = T_est[-1].expand(m_max, 5, 5).bmm(SE3_2.exp(xi.cuda()).cpu())
clines = Ttemp[:, :3, 4]
plt.plot(clines[:, i1], clines[:, i2], color=color)
# np.savetxt("figures/figure2"+color+str(n)+".txt", clines[:, :2].numpy(), comments="", header="x y")
def plot_so3_helper(T_est, P_est, v, color, i1, i2):
"""
Draw ellipse based on the 3 more important directions of the covariance
"""
D, V = torch.eig(P_est, eigenvectors=True)
Y, I = torch.sort(D[:, 0], descending=True)
a = sigma*D[I[0], 0].sqrt() * V[:, I[0]]
b = sigma*D[I[1], 0].sqrt() * V[:, I[1]]
c = sigma*D[I[2], 0].sqrt() * V[:, I[2]]
for n in range(3):
if n == 0:
p = a*v.sin() + b*v.cos()
elif n == 1:
p = b*v.sin() + c*v.cos()
elif n == 2:
p = a*v.sin() + c*v.cos()
clines = T_est[-1, :3, 4].expand(m_max, 3) + p
plt.plot(clines[:, i1], clines[:, i2], color=color)
# np.savetxt("figures/figure2"+color+str(n)+".txt", clines[:, :2].numpy(), comments="", header="x y")
def main(i_max, k_max, T0, Sigma0, Upsilon, Q, cholQ, dt, g, sigma, m_max):
# Generate some random samples
T = torch.zeros(i_max, k_max, 5, 5).cuda()
T[:, 0] = T0.cuda().repeat(i_max, 1, 1)
tmp = Sigma0.sqrt().cuda().expand(i_max, 9, 9) # Pxi assumed diagonal!
T[:, 0] = T[:, 0].bmm(SE3_2.exp(bmv(tmp, torch.randn(i_max, 9).cuda())))
Gamma = f_Gamma(g, dt).cuda().expand(i_max, 5, 5)
tmp = cholQ.cuda().expand(i_max, 9, 9)
tmp2 = Upsilon.cuda().expand(i_max, 5, 5)
for k in range(1, k_max):
T_k = SE3_2.exp(bmv(tmp, torch.randn(i_max, 9).cuda()))
Phi = f_flux(T[:, k-1], dt)
T[:, k] = Gamma.bmm(Phi).bmm(tmp2).bmm(T_k)
T = T.cpu()
# Propagate the uncertainty using second- and fourth-order methods
T_est = torch.zeros(k_max, 5, 5)
Sigma2th = torch.zeros(k_max, 9, 9) # second order covariance
Sigma4th = torch.zeros(k_max, 9, 9) # fourth order covariance
SigmaSO3 = torch.zeros(k_max, 9, 9) # SO(3) x R^6 covariance
T_est[0] = T0
Sigma2th[0] = Sigma0.clone()
Sigma4th[0] = Sigma0.clone()
SigmaSO3[0] = Sigma0.clone()
for k in range(1, k_max):
# Second-order method
T_est[k], Sigma2th[k] = propagate(T_est[k-1], Sigma2th[k-1], Upsilon, Q, 0, dt, g)
# Fourth-order method
_, Sigma4th[k] = propagate(T_est[k-1], Sigma4th[k-1], Upsilon, Q, 1, dt, g)
# baseline method
_, SigmaSO3[k] = propagate(T_est[k-1], SigmaSO3[k-1], Upsilon, Q, 2, dt, g)
## Numerical check of paper formulas
# Sigma_K = Sigma2th[-1]
# sigma = Q[2, 2].sqrt()
# K = k_max-1
# a = 1
# Deltat = 0.05
# Sigma_phiphi = K * sigma * sigma
# print(Sigma_phiphi, Sigma_K[2, 2])
# Sigma_phiv = -(K-1)/2 * a * Deltat * Sigma_phiphi
# print(Sigma_phiv, Sigma_K[2, 4])
# Sigma_phip = (K-1)*(2*K-1)/12 * a * (Deltat**2) * Sigma_phiphi
# print(Sigma_phip, Sigma_K[2, 7])
# Sigma_vv = (K-1)*(2*K-1)/6 * ((a * Deltat)**2) * Sigma_phiphi
# print(Sigma_vv, Sigma_K[4, 4])
# Sigma_vp = (K-1)**2 * (K)**2 * 1/(8*K) * ((a**2) * (Deltat**3)) * Sigma_phiphi
# print(Sigma_vp, Sigma_K[4, 7])
# Sigma_pp = (K-1)*(2*K-1)*(3*(K-1)**2 + 3*K -4)/120 * ((a**2) * (Deltat**4)) * Sigma_phiphi
# print(Sigma_pp, Sigma_K[7, 7])
# Plot the random samples' trajectory lines
for i in range(i_max):
plt.plot(T[i, :, 0, 4], T[i, :, 1, 4], color='gray', alpha=0.1)
v = (2*np.pi*torch.arange(m_max)/(m_max-1) -np.pi).unsqueeze(1)
x = T[:, -1, :3, 4]
xmean = torch.mean(x, dim=0)
vSigma = bouter(x - xmean, x - xmean).sum(dim=0)/(i_max-1)
# Plot blue dots for random samples
plt.scatter(T[:, -1, 0, 4], T[:, -1, 1, 4], s=2, color='black')
# Plot the mean of the samples
plt.scatter(xmean[0], xmean[1], label='mean', color='orange')
# Plot the covariance of the samples
T_est2 = T_est.clone()
T_est2[-1, :3, 4] = xmean
plot_so3_helper(T_est2, vSigma, v, "orange", 0, 1)
plt.scatter(T_est[-1, 0, 4], T_est[-1, 1, 4], label='estimation',
color='green')
plot_se23_helper(T_est, Sigma2th[-1], v, 'green', 0, 1)
plot_so3_helper(T_est, SigmaSO3[-1, 6:9, 6:9], v, 'red', 0, 1)
plot_se23_helper(T_est, Sigma4th[-1], v, 'cyan', 0, 1)
plt.xlabel('x')
plt.xlim(left=0)
plt.ylabel('y')
plt.show()
#np.savetxt("figures/figure2T.txt", T[:, -1, :2, 4].numpy(), comments="", header="x y")
# b = T.new_zeros(int(T.shape[1]/10)+1, T.shape[0])
# header = ""
# for j in range(int(T.shape[0]/2)):
# b[:, 2*j:2*(j+1)] = T[j, ::10, :2, 4]
# header += str(j) + "x " + str(j) + str("y ")
#np.savetxt("figures/figure2traj.txt", b.numpy(), comments="", header=header)
if __name__ == '__main__':
### Parameters ###
i_max = 1000 # number of random points
k_max = 301 # number of compounded poses
sigma = 3 # plot option (factor for ellipse size)
m_max = 100 # plot option (number of points for each ellipse)
g = torch.Tensor([0, 0, 9.81]) # gravity vector
dt = 0.05 # step time (s)
a = 1 # acceleration (m/s^2)
# Constant acceleration, noise on IMU
# Define a PDF over transformations (mean and covariance)
xibar = torch.Tensor([0, 0, 0, a, 0, 0, 0, 0, 0]).cuda()*dt
Upsilon = SE3_2.uexp(xibar).cpu()
Upsilon[:3, 3] += -g*dt
Upsilon[:3, 4] = Upsilon[:3, 3]*dt/2
T0 = torch.eye(5)
Sigma0 = torch.zeros(9, 9)
# Define right perturbation noise
cholQ = torch.Tensor([0, 0, 0.03, 0, 0, 0, 0, 0, 0]).diag()
Q = cholQ.mm(cholQ.t())
main(i_max, k_max, T0, Sigma0, Upsilon, Q, cholQ, dt, g, sigma, m_max)