-
-
Notifications
You must be signed in to change notification settings - Fork 558
/
Copy pathGPU2D.cpp
735 lines (636 loc) · 20.3 KB
/
GPU2D.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/*
Copyright 2016-2024 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "GPU.h"
#include "GPU3D.h"
namespace melonDS
{
using Platform::Log;
using Platform::LogLevel;
// notes on color conversion
//
// * BLDCNT special effects are applied on 18bit colors
// -> layers are converted to 18bit before being composited
// -> 'brightness up' effect does: x = x + (63-x)*factor
// * colors are converted as follows: 18bit = 15bit * 2
// -> white comes out as 62,62,62 and not 63,63,63
// * VRAM/FIFO display modes convert colors the same way
// * 3D engine converts colors differently (18bit = 15bit * 2 + 1, except 0 = 0)
// * 'screen disabled' white is 63,63,63
// * [Gericom] bit15 is used as bottom green bit for palettes. TODO: check where this applies.
// tested on the normal BG palette and applies there
//
// for VRAM display mode, VRAM must be mapped to LCDC
//
// FIFO display mode:
// * the 'FIFO' is a circular buffer of 32 bytes (16 pixels)
// * the buffer doesn't get empty, the display controller keeps reading from it
// -> if it isn't updated, the contents will be repeated every 16 pixels
// * the write pointer is incremented when writing to the higher 16 bits of the FIFO register (0x04000068)
// * the write pointer is reset upon VBlank
// * FIFO DMA (mode 4) is triggered every 8 pixels. start bit is cleared upon VBlank.
//
// sprite blending rules
// * destination must be selected as 2nd target
// * sprite must be semitransparent or bitmap sprite
// * blending is applied instead of the selected color effect, even if it is 'none'.
// * for bitmap sprites: EVA = alpha+1, EVB = 16-EVA
// * for bitmap sprites: alpha=0 is always transparent, even if blending doesn't apply
//
// 3D blending rules
//
// 3D/3D blending seems to follow these equations:
// dstColor = srcColor*srcAlpha + dstColor*(1-srcAlpha)
// dstAlpha = max(srcAlpha, dstAlpha)
// blending isn't applied if dstAlpha is zero.
//
// 3D/2D blending rules
// * if destination selected as 2nd target:
// blending is applied instead of the selected color effect, using full 5bit alpha from 3D layer
// this even if the selected color effect is 'none'.
// apparently this works even if BG0 isn't selected as 1st target
// * if BG0 is selected as 1st target, destination not selected as 2nd target:
// brightness up/down effect is applied if selected. if blending is selected, it doesn't apply.
// * 3D layer pixels with alpha=0 are always transparent.
//
// mosaic:
// * mosaic grid starts at 0,0 regardless of the BG/sprite position
// * when changing it midframe: new X setting is applied immediately, new Y setting is applied only
// after the end of the current mosaic row (when Y counter needs reloaded)
// * for rotscaled sprites: coordinates that are inside the sprite are clamped to the sprite region
// after being transformed for mosaic
// TODO: master brightness, display capture and mainmem FIFO are separate circuitry, distinct from
// the tile renderers.
// for example these aren't affected by POWCNT GPU-disable bits.
// to model the hardware more accurately, the relevant logic should be moved to GPU.cpp.
namespace GPU2D
{
Unit::Unit(u32 num, melonDS::GPU& gpu) : Num(num), GPU(gpu)
{
}
void Unit::Reset()
{
Enabled = false;
DispCnt = 0;
memset(BGCnt, 0, 4*2);
memset(BGXPos, 0, 4*2);
memset(BGYPos, 0, 4*2);
memset(BGXRef, 0, 2*4);
memset(BGYRef, 0, 2*4);
memset(BGXRefInternal, 0, 2*4);
memset(BGYRefInternal, 0, 2*4);
memset(BGRotA, 0, 2*2);
memset(BGRotB, 0, 2*2);
memset(BGRotC, 0, 2*2);
memset(BGRotD, 0, 2*2);
memset(Win0Coords, 0, 4);
memset(Win1Coords, 0, 4);
memset(WinCnt, 0, 4);
Win0Active = 0;
Win1Active = 0;
BGMosaicSize[0] = 0;
BGMosaicSize[1] = 0;
OBJMosaicSize[0] = 0;
OBJMosaicSize[1] = 0;
BGMosaicY = 0;
BGMosaicYMax = 0;
OBJMosaicY = 0;
OBJMosaicYMax = 0;
OBJMosaicYCount = 0;
BlendCnt = 0;
EVA = 16;
EVB = 0;
EVY = 0;
memset(DispFIFO, 0, 16*2);
DispFIFOReadPtr = 0;
DispFIFOWritePtr = 0;
memset(DispFIFOBuffer, 0, 256*2);
CaptureCnt = 0;
CaptureLatch = false;
MasterBrightness = 0;
}
void Unit::DoSavestate(Savestate* file)
{
file->Section((char*)(Num ? "GP2B" : "GP2A"));
file->Var32(&DispCnt);
file->VarArray(BGCnt, 4*2);
file->VarArray(BGXPos, 4*2);
file->VarArray(BGYPos, 4*2);
file->VarArray(BGXRef, 2*4);
file->VarArray(BGYRef, 2*4);
file->VarArray(BGXRefInternal, 2*4);
file->VarArray(BGYRefInternal, 2*4);
file->VarArray(BGRotA, 2*2);
file->VarArray(BGRotB, 2*2);
file->VarArray(BGRotC, 2*2);
file->VarArray(BGRotD, 2*2);
file->VarArray(Win0Coords, 4);
file->VarArray(Win1Coords, 4);
file->VarArray(WinCnt, 4);
file->VarArray(BGMosaicSize, 2);
file->VarArray(OBJMosaicSize, 2);
file->Var8(&BGMosaicY);
file->Var8(&BGMosaicYMax);
file->Var8(&OBJMosaicY);
file->Var8(&OBJMosaicYMax);
file->Var16(&BlendCnt);
file->Var16(&BlendAlpha);
file->Var8(&EVA);
file->Var8(&EVB);
file->Var8(&EVY);
file->Var16(&MasterBrightness);
if (!Num)
{
file->VarArray(DispFIFO, 16*2);
file->Var32(&DispFIFOReadPtr);
file->Var32(&DispFIFOWritePtr);
file->VarArray(DispFIFOBuffer, 256*2);
file->Var32(&CaptureCnt);
}
file->Var32(&Win0Active);
file->Var32(&Win1Active);
}
u8 Unit::Read8(u32 addr)
{
switch (addr & 0x00000FFF)
{
case 0x000: return DispCnt & 0xFF;
case 0x001: return (DispCnt >> 8) & 0xFF;
case 0x002: return (DispCnt >> 16) & 0xFF;
case 0x003: return DispCnt >> 24;
case 0x008: return BGCnt[0] & 0xFF;
case 0x009: return BGCnt[0] >> 8;
case 0x00A: return BGCnt[1] & 0xFF;
case 0x00B: return BGCnt[1] >> 8;
case 0x00C: return BGCnt[2] & 0xFF;
case 0x00D: return BGCnt[2] >> 8;
case 0x00E: return BGCnt[3] & 0xFF;
case 0x00F: return BGCnt[3] >> 8;
case 0x048: return WinCnt[0];
case 0x049: return WinCnt[1];
case 0x04A: return WinCnt[2];
case 0x04B: return WinCnt[3];
// there are games accidentally trying to read those
// those are write-only
case 0x04C:
case 0x04D: return 0;
}
Log(LogLevel::Debug, "unknown GPU read8 %08X\n", addr);
return 0;
}
u16 Unit::Read16(u32 addr)
{
switch (addr & 0x00000FFF)
{
case 0x000: return DispCnt & 0xFFFF;
case 0x002: return DispCnt >> 16;
case 0x008: return BGCnt[0];
case 0x00A: return BGCnt[1];
case 0x00C: return BGCnt[2];
case 0x00E: return BGCnt[3];
case 0x048: return WinCnt[0] | (WinCnt[1] << 8);
case 0x04A: return WinCnt[2] | (WinCnt[3] << 8);
case 0x050: return BlendCnt;
case 0x052: return BlendAlpha;
// BLDY is write-only
case 0x064: return CaptureCnt & 0xFFFF;
case 0x066: return CaptureCnt >> 16;
case 0x06C: return MasterBrightness;
}
Log(LogLevel::Debug, "unknown GPU read16 %08X\n", addr);
return 0;
}
u32 Unit::Read32(u32 addr)
{
switch (addr & 0x00000FFF)
{
case 0x000: return DispCnt;
case 0x064: return CaptureCnt;
}
return Read16(addr) | (Read16(addr+2) << 16);
}
void Unit::Write8(u32 addr, u8 val)
{
switch (addr & 0x00000FFF)
{
case 0x000:
DispCnt = (DispCnt & 0xFFFFFF00) | val;
if (Num) DispCnt &= 0xC0B1FFF7;
return;
case 0x001:
DispCnt = (DispCnt & 0xFFFF00FF) | (val << 8);
if (Num) DispCnt &= 0xC0B1FFF7;
return;
case 0x002:
DispCnt = (DispCnt & 0xFF00FFFF) | (val << 16);
if (Num) DispCnt &= 0xC0B1FFF7;
return;
case 0x003:
DispCnt = (DispCnt & 0x00FFFFFF) | (val << 24);
if (Num) DispCnt &= 0xC0B1FFF7;
return;
case 0x10:
if (!Num) GPU.GPU3D.SetRenderXPos((GPU.GPU3D.GetRenderXPos() & 0xFF00) | val);
break;
case 0x11:
if (!Num) GPU.GPU3D.SetRenderXPos((GPU.GPU3D.GetRenderXPos() & 0x00FF) | (val << 8));
break;
}
if (!Enabled) return;
switch (addr & 0x00000FFF)
{
case 0x008: BGCnt[0] = (BGCnt[0] & 0xFF00) | val; return;
case 0x009: BGCnt[0] = (BGCnt[0] & 0x00FF) | (val << 8); return;
case 0x00A: BGCnt[1] = (BGCnt[1] & 0xFF00) | val; return;
case 0x00B: BGCnt[1] = (BGCnt[1] & 0x00FF) | (val << 8); return;
case 0x00C: BGCnt[2] = (BGCnt[2] & 0xFF00) | val; return;
case 0x00D: BGCnt[2] = (BGCnt[2] & 0x00FF) | (val << 8); return;
case 0x00E: BGCnt[3] = (BGCnt[3] & 0xFF00) | val; return;
case 0x00F: BGCnt[3] = (BGCnt[3] & 0x00FF) | (val << 8); return;
case 0x010: BGXPos[0] = (BGXPos[0] & 0xFF00) | val; return;
case 0x011: BGXPos[0] = (BGXPos[0] & 0x00FF) | (val << 8); return;
case 0x012: BGYPos[0] = (BGYPos[0] & 0xFF00) | val; return;
case 0x013: BGYPos[0] = (BGYPos[0] & 0x00FF) | (val << 8); return;
case 0x014: BGXPos[1] = (BGXPos[1] & 0xFF00) | val; return;
case 0x015: BGXPos[1] = (BGXPos[1] & 0x00FF) | (val << 8); return;
case 0x016: BGYPos[1] = (BGYPos[1] & 0xFF00) | val; return;
case 0x017: BGYPos[1] = (BGYPos[1] & 0x00FF) | (val << 8); return;
case 0x018: BGXPos[2] = (BGXPos[2] & 0xFF00) | val; return;
case 0x019: BGXPos[2] = (BGXPos[2] & 0x00FF) | (val << 8); return;
case 0x01A: BGYPos[2] = (BGYPos[2] & 0xFF00) | val; return;
case 0x01B: BGYPos[2] = (BGYPos[2] & 0x00FF) | (val << 8); return;
case 0x01C: BGXPos[3] = (BGXPos[3] & 0xFF00) | val; return;
case 0x01D: BGXPos[3] = (BGXPos[3] & 0x00FF) | (val << 8); return;
case 0x01E: BGYPos[3] = (BGYPos[3] & 0xFF00) | val; return;
case 0x01F: BGYPos[3] = (BGYPos[3] & 0x00FF) | (val << 8); return;
case 0x040: Win0Coords[1] = val; return;
case 0x041: Win0Coords[0] = val; return;
case 0x042: Win1Coords[1] = val; return;
case 0x043: Win1Coords[0] = val; return;
case 0x044: Win0Coords[3] = val; return;
case 0x045: Win0Coords[2] = val; return;
case 0x046: Win1Coords[3] = val; return;
case 0x047: Win1Coords[2] = val; return;
case 0x048: WinCnt[0] = val; return;
case 0x049: WinCnt[1] = val; return;
case 0x04A: WinCnt[2] = val; return;
case 0x04B: WinCnt[3] = val; return;
case 0x04C:
BGMosaicSize[0] = val & 0xF;
BGMosaicSize[1] = val >> 4;
return;
case 0x04D:
OBJMosaicSize[0] = val & 0xF;
OBJMosaicSize[1] = val >> 4;
return;
case 0x050: BlendCnt = (BlendCnt & 0x3F00) | val; return;
case 0x051: BlendCnt = (BlendCnt & 0x00FF) | (val << 8); return;
case 0x052:
BlendAlpha = (BlendAlpha & 0x1F00) | (val & 0x1F);
EVA = val & 0x1F;
if (EVA > 16) EVA = 16;
return;
case 0x053:
BlendAlpha = (BlendAlpha & 0x001F) | ((val & 0x1F) << 8);
EVB = val & 0x1F;
if (EVB > 16) EVB = 16;
return;
case 0x054:
EVY = val & 0x1F;
if (EVY > 16) EVY = 16;
return;
}
Log(LogLevel::Debug, "unknown GPU write8 %08X %02X\n", addr, val);
}
void Unit::Write16(u32 addr, u16 val)
{
switch (addr & 0x00000FFF)
{
case 0x000:
DispCnt = (DispCnt & 0xFFFF0000) | val;
if (Num) DispCnt &= 0xC0B1FFF7;
return;
case 0x002:
DispCnt = (DispCnt & 0x0000FFFF) | (val << 16);
if (Num) DispCnt &= 0xC0B1FFF7;
return;
case 0x010:
if (!Num) GPU.GPU3D.SetRenderXPos(val);
break;
case 0x064:
CaptureCnt = (CaptureCnt & 0xFFFF0000) | (val & 0xEF3F1F1F);
return;
case 0x066:
CaptureCnt = (CaptureCnt & 0xFFFF) | ((val << 16) & 0xEF3F1F1F);
return;
case 0x068:
DispFIFO[DispFIFOWritePtr] = val;
return;
case 0x06A:
DispFIFO[DispFIFOWritePtr+1] = val;
DispFIFOWritePtr += 2;
DispFIFOWritePtr &= 0xF;
return;
case 0x06C: MasterBrightness = val; return;
}
if (!Enabled) return;
switch (addr & 0x00000FFF)
{
case 0x008: BGCnt[0] = val; return;
case 0x00A: BGCnt[1] = val; return;
case 0x00C: BGCnt[2] = val; return;
case 0x00E: BGCnt[3] = val; return;
case 0x010: BGXPos[0] = val; return;
case 0x012: BGYPos[0] = val; return;
case 0x014: BGXPos[1] = val; return;
case 0x016: BGYPos[1] = val; return;
case 0x018: BGXPos[2] = val; return;
case 0x01A: BGYPos[2] = val; return;
case 0x01C: BGXPos[3] = val; return;
case 0x01E: BGYPos[3] = val; return;
case 0x020: BGRotA[0] = val; return;
case 0x022: BGRotB[0] = val; return;
case 0x024: BGRotC[0] = val; return;
case 0x026: BGRotD[0] = val; return;
case 0x028:
BGXRef[0] = (BGXRef[0] & 0xFFFF0000) | val;
if (GPU.VCount < 192) BGXRefInternal[0] = BGXRef[0];
return;
case 0x02A:
if (val & 0x0800) val |= 0xF000;
BGXRef[0] = (BGXRef[0] & 0xFFFF) | (val << 16);
if (GPU.VCount < 192) BGXRefInternal[0] = BGXRef[0];
return;
case 0x02C:
BGYRef[0] = (BGYRef[0] & 0xFFFF0000) | val;
if (GPU.VCount < 192) BGYRefInternal[0] = BGYRef[0];
return;
case 0x02E:
if (val & 0x0800) val |= 0xF000;
BGYRef[0] = (BGYRef[0] & 0xFFFF) | (val << 16);
if (GPU.VCount < 192) BGYRefInternal[0] = BGYRef[0];
return;
case 0x030: BGRotA[1] = val; return;
case 0x032: BGRotB[1] = val; return;
case 0x034: BGRotC[1] = val; return;
case 0x036: BGRotD[1] = val; return;
case 0x038:
BGXRef[1] = (BGXRef[1] & 0xFFFF0000) | val;
if (GPU.VCount < 192) BGXRefInternal[1] = BGXRef[1];
return;
case 0x03A:
if (val & 0x0800) val |= 0xF000;
BGXRef[1] = (BGXRef[1] & 0xFFFF) | (val << 16);
if (GPU.VCount < 192) BGXRefInternal[1] = BGXRef[1];
return;
case 0x03C:
BGYRef[1] = (BGYRef[1] & 0xFFFF0000) | val;
if (GPU.VCount < 192) BGYRefInternal[1] = BGYRef[1];
return;
case 0x03E:
if (val & 0x0800) val |= 0xF000;
BGYRef[1] = (BGYRef[1] & 0xFFFF) | (val << 16);
if (GPU.VCount < 192) BGYRefInternal[1] = BGYRef[1];
return;
case 0x040:
Win0Coords[1] = val & 0xFF;
Win0Coords[0] = val >> 8;
return;
case 0x042:
Win1Coords[1] = val & 0xFF;
Win1Coords[0] = val >> 8;
return;
case 0x044:
Win0Coords[3] = val & 0xFF;
Win0Coords[2] = val >> 8;
return;
case 0x046:
Win1Coords[3] = val & 0xFF;
Win1Coords[2] = val >> 8;
return;
case 0x048:
WinCnt[0] = val & 0xFF;
WinCnt[1] = val >> 8;
return;
case 0x04A:
WinCnt[2] = val & 0xFF;
WinCnt[3] = val >> 8;
return;
case 0x04C:
BGMosaicSize[0] = val & 0xF;
BGMosaicSize[1] = (val >> 4) & 0xF;
OBJMosaicSize[0] = (val >> 8) & 0xF;
OBJMosaicSize[1] = val >> 12;
return;
case 0x050: BlendCnt = val & 0x3FFF; return;
case 0x052:
BlendAlpha = val & 0x1F1F;
EVA = val & 0x1F;
if (EVA > 16) EVA = 16;
EVB = (val >> 8) & 0x1F;
if (EVB > 16) EVB = 16;
return;
case 0x054:
EVY = val & 0x1F;
if (EVY > 16) EVY = 16;
return;
}
//printf("unknown GPU write16 %08X %04X\n", addr, val);
}
void Unit::Write32(u32 addr, u32 val)
{
switch (addr & 0x00000FFF)
{
case 0x000:
DispCnt = val;
if (Num) DispCnt &= 0xC0B1FFF7;
return;
case 0x064:
CaptureCnt = val & 0xEF3F1F1F;
return;
case 0x068:
DispFIFO[DispFIFOWritePtr] = val & 0xFFFF;
DispFIFO[DispFIFOWritePtr+1] = val >> 16;
DispFIFOWritePtr += 2;
DispFIFOWritePtr &= 0xF;
return;
}
if (Enabled)
{
switch (addr & 0x00000FFF)
{
case 0x028:
if (val & 0x08000000) val |= 0xF0000000;
BGXRef[0] = val;
if (GPU.VCount < 192) BGXRefInternal[0] = BGXRef[0];
return;
case 0x02C:
if (val & 0x08000000) val |= 0xF0000000;
BGYRef[0] = val;
if (GPU.VCount < 192) BGYRefInternal[0] = BGYRef[0];
return;
case 0x038:
if (val & 0x08000000) val |= 0xF0000000;
BGXRef[1] = val;
if (GPU.VCount < 192) BGXRefInternal[1] = BGXRef[1];
return;
case 0x03C:
if (val & 0x08000000) val |= 0xF0000000;
BGYRef[1] = val;
if (GPU.VCount < 192) BGYRefInternal[1] = BGYRef[1];
return;
}
}
Write16(addr, val&0xFFFF);
Write16(addr+2, val>>16);
}
void Unit::UpdateMosaicCounters(u32 line)
{
// Y mosaic uses incrementing 4-bit counters
// the transformed Y position is updated every time the counter matches the MOSAIC register
if (OBJMosaicYCount == OBJMosaicSize[1])
{
OBJMosaicYCount = 0;
OBJMosaicY = line + 1;
}
else
{
OBJMosaicYCount++;
OBJMosaicYCount &= 0xF;
}
}
void Unit::VBlank()
{
if (CaptureLatch)
{
CaptureCnt &= ~(1<<31);
CaptureLatch = false;
}
DispFIFOReadPtr = 0;
DispFIFOWritePtr = 0;
}
void Unit::VBlankEnd()
{
// TODO: find out the exact time this happens
BGXRefInternal[0] = BGXRef[0];
BGXRefInternal[1] = BGXRef[1];
BGYRefInternal[0] = BGYRef[0];
BGYRefInternal[1] = BGYRef[1];
BGMosaicY = 0;
BGMosaicYMax = BGMosaicSize[1];
//OBJMosaicY = 0;
//OBJMosaicYMax = OBJMosaicSize[1];
//OBJMosaicY = 0;
//OBJMosaicYCount = 0;
}
void Unit::SampleFIFO(u32 offset, u32 num)
{
for (u32 i = 0; i < num; i++)
{
u16 val = DispFIFO[DispFIFOReadPtr];
DispFIFOReadPtr++;
DispFIFOReadPtr &= 0xF;
DispFIFOBuffer[offset+i] = val;
}
}
u16* Unit::GetBGExtPal(u32 slot, u32 pal)
{
const u32 PaletteSize = 256 * 2;
const u32 SlotSize = PaletteSize * 16;
return (u16*)&(Num == 0
? GPU.VRAMFlat_ABGExtPal
: GPU.VRAMFlat_BBGExtPal)[slot * SlotSize + pal * PaletteSize];
}
u16* Unit::GetOBJExtPal()
{
return Num == 0
? (u16*)GPU.VRAMFlat_AOBJExtPal
: (u16*)GPU.VRAMFlat_BOBJExtPal;
}
void Unit::CheckWindows(u32 line)
{
line &= 0xFF;
if (line == Win0Coords[3]) Win0Active &= ~0x1;
else if (line == Win0Coords[2]) Win0Active |= 0x1;
if (line == Win1Coords[3]) Win1Active &= ~0x1;
else if (line == Win1Coords[2]) Win1Active |= 0x1;
}
void Unit::CalculateWindowMask(u32 line, u8* windowMask, const u8* objWindow)
{
for (u32 i = 0; i < 256; i++)
windowMask[i] = WinCnt[2]; // window outside
if (DispCnt & (1<<15))
{
// OBJ window
for (int i = 0; i < 256; i++)
{
if (objWindow[i])
windowMask[i] = WinCnt[3];
}
}
if (DispCnt & (1<<14))
{
// window 1
u8 x1 = Win1Coords[0];
u8 x2 = Win1Coords[1];
for (int i = 0; i < 256; i++)
{
if (i == x2) Win1Active &= ~0x2;
else if (i == x1) Win1Active |= 0x2;
if (Win1Active == 0x3) windowMask[i] = WinCnt[1];
}
}
if (DispCnt & (1<<13))
{
// window 0
u8 x1 = Win0Coords[0];
u8 x2 = Win0Coords[1];
for (int i = 0; i < 256; i++)
{
if (i == x2) Win0Active &= ~0x2;
else if (i == x1) Win0Active |= 0x2;
if (Win0Active == 0x3) windowMask[i] = WinCnt[0];
}
}
}
void Unit::GetBGVRAM(u8*& data, u32& mask) const
{
if (Num == 0)
{
data = GPU.VRAMFlat_ABG;
mask = 0x7FFFF;
}
else
{
data = GPU.VRAMFlat_BBG;
mask = 0x1FFFF;
}
}
void Unit::GetOBJVRAM(u8*& data, u32& mask) const
{
if (Num == 0)
{
data = GPU.VRAMFlat_AOBJ;
mask = 0x3FFFF;
}
else
{
data = GPU.VRAMFlat_BOBJ;
mask = 0x1FFFF;
}
}
}
}