forked from wri/carbon-budget
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_full_model.py
618 lines (475 loc) · 31.3 KB
/
run_full_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
"""
Clone repository:
git clone https://github.com/wri/carbon-budget
Create spot machine using spotutil:
spotutil new r5d.24xlarge dgibbs_wri
Build Docker container:
docker build . -t gfw/carbon-budget
Enter Docker container:
docker run --rm -it -e AWS_SECRET_ACCESS_KEY=[] -e AWS_ACCESS_KEY_ID=[] gfw/carbon-budget
Run: standard model; save intermediate outputs; run model from annual_removals_IPCC;
upload to folder with date 20239999; run 00N_000E; get carbon pools at time of loss; add a log note;
do not upload outputs to s3; use multiprocessing (implicit because no -sp flag);
only run listed stage (implicit because no -r flag)
python -m run_full_model -t std -si -s annual_removals_IPCC -nu -l 00N_000E -ce loss -ln "00N_000E test"
Run: standard model; save intermediate outputs; run model from annual_removals_IPCC; run all subsequent model stages;
do not upload outputs to s3; run 00N_000E; get carbon pools at time of loss; add a log note;
upload outputs to s3 (implicit because no -nu flag); use multiprocessing (implicit because no -sp flag)
python -m run_full_model -t std -si -s annual_removals_IPCC -r -nu -l 00N_000E -ce loss -ln "00N_000E test"
Run: standard model; save intermediate outputs; run model from the beginning; run all model stages;
upload to folder with date 20239999; run 00N_000E; get carbon pools at time of loss; add a log note;
upload outputs to s3 (implicit because no -nu flag); use multiprocessing (implicit because no -sp flag)
python -m run_full_model -t std -si -s all -r -d 20239999 -l 00N_000E -ce loss -ln "00N_000E test"
Run: standard model; save intermediate outputs; run model from the beginning; run all model stages;
upload to folder with date 20239999; run 00N_000E; get carbon pools at time of loss; add a log note;
do not upload outputs to s3; use multiprocessing (implicit because no -sp flag)
python -m run_full_model -t std -si -s all -r -d 20239999 -l 00N_000E -ce loss -ln "00N_000E test" -nu
Run: standard model; run model from the beginning; run all model stages;
upload to folder with date 20239999; run 00N_000E; get carbon pools at time of loss; add a log note;
do not upload outputs to s3; use singleprocessing;
do not save intermediate outputs (implicit because no -si flag)
python -m run_full_model -t std -s all -r -nu -d 20239999 -l 00N_000E,00N_010E -ce loss -sp -ln "Two tile test"
FULL STANDARD MODEL RUN: standard model; save intermediate outputs; run model from the beginning; run all model stages;
run all tiles; get carbon pools at time of loss; add a log note;
upload outputs to s3 (implicit because no -nu flag); use multiprocessing (implicit because no -sp flag)
python -m run_full_model -t std -si -s all -r -l all -ce loss -ln "Running all tiles"
"""
import argparse
import datetime
import glob
import os
import constants_and_names as cn
import universal_util as uu
from data_prep.mp_model_extent import mp_model_extent
from removals.mp_annual_gain_rate_mangrove import mp_annual_gain_rate_mangrove
from removals.mp_US_removal_rates import mp_US_removal_rates
from removals.mp_forest_age_category_IPCC import mp_forest_age_category_IPCC
from removals.mp_annual_gain_rate_IPCC_defaults import mp_annual_gain_rate_IPCC_defaults
from removals.mp_annual_gain_rate_AGC_BGC_all_forest_types import mp_annual_gain_rate_AGC_BGC_all_forest_types
from removals.mp_gain_year_count_all_forest_types import mp_gain_year_count_all_forest_types
from removals.mp_gross_removals_all_forest_types import mp_gross_removals_all_forest_types
from carbon_pools.mp_create_carbon_pools import mp_create_carbon_pools
from emissions.mp_calculate_gross_emissions import mp_calculate_gross_emissions
from analyses.mp_net_flux import mp_net_flux
from analyses.mp_derivative_outputs import mp_derivative_outputs
def main ():
"""
Runs the entire forest GHG flux model or a subset of stages
:return: Sets of output tiles for the selected stages
"""
os.chdir(cn.docker_tile_dir)
# List of possible model stages to run (not including mangrove and planted forest stages)
model_stages = ['all', 'model_extent', 'forest_age_category_IPCC', 'annual_removals_IPCC',
'annual_removals_all_forest_types', 'gain_year_count', 'gross_removals_all_forest_types',
'carbon_pools', 'gross_emissions_biomass_soil', 'gross_emissions_soil_only',
'net_flux', 'create_derivative_outputs']
# The argument for what kind of model run is being done: standard conditions or a sensitivity analysis run
parser = argparse.ArgumentParser(description='Run the full carbon flux model')
parser.add_argument('--model-type', '-t', required=True, help=f'{cn.model_type_arg_help}')
parser.add_argument('--stages', '-s', required=True,
help=f'Stages for running the flux model. Options are {model_stages}')
parser.add_argument('--run-through', '-r', action='store_true',
help='If activated, run named stage and all following stages. If not activated, run the selected stage only.')
parser.add_argument('--run-date', '-d', required=False,
help='Date of run. Must be format YYYYMMDD.')
parser.add_argument('--tile-id-list', '-l', required=True,
help='List of tile ids to use in the model. Should be of form 00N_110E or 00N_110E,00N_120E or all.')
parser.add_argument('--carbon-pool-extent', '-ce', required=False,
help='Time period for which carbon pools should be calculated: loss, 2000, loss,2000, or 2000,loss')
parser.add_argument('--std-net-flux-aggreg', '-sagg', required=False,
help='The s3 standard model net flux aggregated tif, for comparison with the sensitivity analysis map')
parser.add_argument('--mangroves', '-ma', action='store_true',
help='Include mangrove removal rate and standard deviation tile creation step (before model extent).')
parser.add_argument('--us-rates', '-us', action='store_true',
help='Include US removal rate and standard deviation tile creation step (before model extent).')
parser.add_argument('--no-upload', '-nu', action='store_true',
help='Disables uploading of outputs to s3')
parser.add_argument('--single-processor', '-sp', action='store_true',
help='Uses single processing rather than multiprocessing')
parser.add_argument('--save-intermediates', '-si', action='store_true',
help='Saves intermediate model outputs rather than deleting them to save storage')
parser.add_argument('--log-note', '-ln', required=False,
help='Note to include in log header about model run.')
args = parser.parse_args()
# Sets global variables to the command line arguments
cn.SENSIT_TYPE = args.model_type
cn.STAGE_INPUT = args.stages
cn.RUN_THROUGH = args.run_through
cn.RUN_DATE = args.run_date
cn.CARBON_POOL_EXTENT = args.carbon_pool_extent
cn.STD_NET_FLUX = args.std_net_flux_aggreg
cn.INCLUDE_MANGROVES = args.mangroves
cn.INCLUDE_US = args.us_rates
cn.NO_UPLOAD = args.no_upload
cn.SINGLE_PROCESSOR = args.single_processor
cn.SAVE_INTERMEDIATES = args.save_intermediates
cn.LOG_NOTE = args.log_note
tile_id_list = args.tile_id_list
# Disables upload to s3 if no AWS credentials are found in environment
if not uu.check_aws_creds():
uu.print_log("s3 credentials not found. Uploading to s3 disabled but downloading enabled.")
cn.NO_UPLOAD = True
# Forces intermediate files to not be deleted if files can't be uploaded to s3.
# Rationale is that if uploads to s3 are not occurring, intermediate files can't be downloaded during the model
# run and therefore must exist locally.
if cn.NO_UPLOAD:
cn.SAVE_INTERMEDIATES = True
# Create the output log
uu.initiate_log(tile_id_list)
# Checks whether the sensitivity analysis and tile_id_list arguments are valid
uu.check_sensit_type(cn.SENSIT_TYPE)
# Start time for script
script_start = datetime.datetime.now()
# Checks the validity of the model stage arguments. If either one is invalid, the script ends.
if cn.STAGE_INPUT not in model_stages:
uu.exception_log(f'Invalid stage selection. Please provide a stage from {model_stages}')
else:
pass
# Generates the list of stages to run
actual_stages = uu.analysis_stages(model_stages, cn.STAGE_INPUT, cn.RUN_THROUGH, cn.SENSIT_TYPE,
include_mangroves = cn.INCLUDE_MANGROVES, include_us=cn.INCLUDE_US)
uu.print_log(f'Analysis stages to run: {actual_stages}')
# Reports how much storage is being used with files
uu.check_storage()
# Checks whether the sensitivity analysis argument is valid
uu.check_sensit_type(cn.SENSIT_TYPE)
# Checks if the carbon pool type is specified if the stages to run includes carbon pool generation.
# Does this up front so the user knows before the run begins that information is missing.
if ('carbon_pools' in actual_stages) & (cn.CARBON_POOL_EXTENT not in ['loss', '2000', 'loss,2000', '2000,loss']):
uu.exception_log('Invalid carbon_pool_extent input. Please choose loss, 2000, loss,2000 or 2000,loss.')
# If the tile_list argument is an s3 folder, the list of tiles in it is created
if 's3://' in tile_id_list:
tile_id_list = uu.tile_list_s3(tile_id_list, 'std')
uu.print_log(tile_id_list)
uu.print_log(f'There are {str(len(tile_id_list))} tiles to process', "\n")
# Otherwise, check that the tile list argument is valid. "all" is the way to specify that all tiles should be processed
else:
tile_id_list = uu.tile_id_list_check(tile_id_list)
# List of output directories and output file name patterns.
# The directory list is only used for counting tiles in output folders at the end of the model
output_dir_list = [
cn.model_extent_dir,
cn.age_cat_IPCC_dir,
cn.annual_gain_AGB_IPCC_defaults_dir, cn.annual_gain_BGB_IPCC_defaults_dir, cn.stdev_annual_gain_AGB_IPCC_defaults_dir,
cn.removal_forest_type_dir,
cn.annual_gain_AGC_all_types_dir, cn.annual_gain_BGC_all_types_dir,
cn.annual_gain_AGC_BGC_all_types_dir, cn.stdev_annual_gain_AGC_all_types_dir,
cn.gain_year_count_dir,
cn.cumul_gain_AGCO2_all_types_dir, cn.cumul_gain_BGCO2_all_types_dir,
cn.cumul_gain_AGCO2_BGCO2_all_types_dir
]
# Prepends the mangrove and US output directories if mangroves are included
if 'annual_removals_mangrove' in actual_stages:
output_dir_list = [cn.annual_gain_AGB_mangrove_dir, cn.annual_gain_BGB_mangrove_dir,
cn.stdev_annual_gain_AGB_mangrove_dir] + output_dir_list
if 'annual_removals_us' in actual_stages:
output_dir_list = [cn.annual_gain_AGC_BGC_natrl_forest_US_dir,
cn.stdev_annual_gain_AGC_BGC_natrl_forest_US_dir] + output_dir_list
# Adds the carbon directories depending on which carbon years are being generated: 2000 and/or emissions year
if 'carbon_pools' in actual_stages:
if 'loss' in cn.CARBON_POOL_EXTENT:
output_dir_list = output_dir_list + [cn.AGC_emis_year_dir, cn.BGC_emis_year_dir,
cn.deadwood_emis_year_2000_dir, cn.litter_emis_year_2000_dir,
cn.soil_C_emis_year_2000_dir, cn.total_C_emis_year_dir]
if '2000' in cn.CARBON_POOL_EXTENT:
output_dir_list = output_dir_list + [cn.AGC_2000_dir, cn.BGC_2000_dir,
cn.deadwood_2000_dir, cn.litter_2000_dir,
cn.soil_C_full_extent_2000_dir, cn.total_C_2000_dir]
# Adds the biomass_soil output directories and the soil_only output directories
output_dir_list = output_dir_list + [cn.gross_emis_commod_biomass_soil_dir,
cn.gross_emis_shifting_ag_biomass_soil_dir,
cn.gross_emis_forestry_biomass_soil_dir,
cn.gross_emis_wildfire_biomass_soil_dir,
cn.gross_emis_urban_biomass_soil_dir,
cn.gross_emis_no_driver_biomass_soil_dir,
cn.gross_emis_all_gases_all_drivers_biomass_soil_dir,
cn.gross_emis_co2_only_all_drivers_biomass_soil_dir,
cn.gross_emis_non_co2_all_drivers_biomass_soil_dir,
cn.gross_emis_nodes_biomass_soil_dir]
output_dir_list = output_dir_list + [cn.gross_emis_commod_soil_only_dir,
cn.gross_emis_shifting_ag_soil_only_dir,
cn.gross_emis_forestry_soil_only_dir,
cn.gross_emis_wildfire_soil_only_dir,
cn.gross_emis_urban_soil_only_dir,
cn.gross_emis_no_driver_soil_only_dir,
cn.gross_emis_all_gases_all_drivers_soil_only_dir,
cn.gross_emis_co2_only_all_drivers_soil_only_dir,
cn.gross_emis_non_co2_all_drivers_soil_only_dir,
cn.gross_emis_nodes_soil_only_dir]
# Adds the net flux output directory
output_dir_list = output_dir_list + [cn.net_flux_dir]
# Supplementary outputs
output_dir_list = output_dir_list + \
[cn.cumul_gain_AGCO2_BGCO2_all_types_per_pixel_full_extent_dir,
cn.cumul_gain_AGCO2_BGCO2_all_types_forest_extent_dir,
cn.cumul_gain_AGCO2_BGCO2_all_types_per_pixel_forest_extent_dir,
cn.gross_emis_all_gases_all_drivers_biomass_soil_per_pixel_full_extent_dir,
cn.gross_emis_all_gases_all_drivers_biomass_soil_forest_extent_dir,
cn.gross_emis_all_gases_all_drivers_biomass_soil_per_pixel_forest_extent_dir,
cn.net_flux_per_pixel_full_extent_dir,
cn.net_flux_forest_extent_dir,
cn.net_flux_per_pixel_forest_extent_dir]
# Creates tiles of annual AGB and BGB removals rate and AGB stdev for mangroves using the standard model
# removal function
if 'annual_removals_mangrove' in actual_stages:
uu.print_log(':::::Creating tiles of annual removals for mangrove')
start = datetime.datetime.now()
mp_annual_gain_rate_mangrove(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for annual_gain_rate_mangrove: {elapsed_time}', "\n", "\n")
# Creates tiles of annual AGC+BGC removals rate and AGC stdev for US-specific removals using the standard model
# removal function
if 'annual_removals_us' in actual_stages:
uu.print_log(':::::Creating tiles of annual removals for US')
start = datetime.datetime.now()
mp_US_removal_rates(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for annual_gain_rate_us: {elapsed_time}', "\n", "\n")
# Creates model extent tiles
if 'model_extent' in actual_stages:
uu.print_log(':::::Creating tiles of model extent')
start = datetime.datetime.now()
mp_model_extent(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for model_extent: {elapsed_time}', "\n", "\n")
# Creates age category tiles for natural forests
if 'forest_age_category_IPCC' in actual_stages:
uu.print_log(':::::Creating tiles of forest age categories for IPCC removal rates')
start = datetime.datetime.now()
mp_forest_age_category_IPCC(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for forest_age_category_IPCC: {elapsed_time}', "\n", "\n")
# Creates tiles of annual AGB and BGB removals rates using IPCC Table 4.9 defaults
if 'annual_removals_IPCC' in actual_stages:
uu.print_log(':::::Creating tiles of annual aboveground and belowground removal rates using IPCC defaults')
start = datetime.datetime.now()
mp_annual_gain_rate_IPCC_defaults(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for annual_gain_rate_IPCC: {elapsed_time}', "\n", "\n")
# Creates tiles of annual AGC and BGC removal factors for the entire model, combining removal factors from all forest types
if 'annual_removals_all_forest_types' in actual_stages:
uu.print_log(':::::Creating tiles of annual aboveground and belowground removal rates for all forest types')
start = datetime.datetime.now()
mp_annual_gain_rate_AGC_BGC_all_forest_types(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for annual_gain_rate_AGC_BGC_all_forest_types: {elapsed_time}', "\n", "\n")
# Creates tiles of the number of years of removals for all model pixels (across all forest types)
if 'gain_year_count' in actual_stages:
if not cn.SAVE_INTERMEDIATES:
uu.print_log(':::::Freeing up memory for gain year count creation by deleting unneeded tiles')
tiles_to_delete = []
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_mangrove_biomass_2000}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_WHRC_biomass_2000_unmasked}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGB_mangrove}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_BGB_mangrove}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGC_BGC_natrl_forest_Europe}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGC_BGC_planted_forest_unmasked}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGC_BGC_natrl_forest_US}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGC_natrl_forest_young}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_age_cat_IPCC}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGB_IPCC_defaults}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_BGB_IPCC_defaults}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGC_BGC_all_types}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_ifl_primary}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_planted_forest_type_unmasked}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_plant_pre_2000}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_stdev_annual_gain_AGB_mangrove}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_stdev_annual_gain_AGC_BGC_natrl_forest_Europe}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_stdev_annual_gain_AGC_BGC_planted_forest_unmasked}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_stdev_annual_gain_AGC_BGC_natrl_forest_US}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_stdev_annual_gain_AGC_natrl_forest_young}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_stdev_annual_gain_AGB_IPCC_defaults}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_stdev_annual_gain_AGC_all_types}*tif'))
uu.print_log(f' Deleting {len(tiles_to_delete)} tiles...')
for tile_to_delete in tiles_to_delete:
os.remove(tile_to_delete)
uu.print_log(':::::Deleted unneeded tiles')
uu.check_storage()
uu.print_log(':::::Creating tiles of gain year count for all removal pixels')
start = datetime.datetime.now()
mp_gain_year_count_all_forest_types(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for gain_year_count: {elapsed_time}', "\n", "\n")
# Creates tiles of gross removals for all forest types (aboveground, belowground, and above+belowground)
if 'gross_removals_all_forest_types' in actual_stages:
uu.print_log(':::::Creating gross removals for all forest types combined (above + belowground) tiles')
start = datetime.datetime.now()
mp_gross_removals_all_forest_types(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for gross_removals_all_forest_types: {elapsed_time}', "\n", "\n")
# Creates carbon pools in loss year
if 'carbon_pools' in actual_stages:
if not cn.SAVE_INTERMEDIATES:
uu.print_log(':::::Freeing up memory for carbon pool creation by deleting unneeded tiles')
tiles_to_delete = []
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_model_extent}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_age_cat_IPCC}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGB_IPCC_defaults}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_BGB_IPCC_defaults}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_BGC_all_types}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGC_BGC_all_types}*tif'))
tiles_to_delete.extend(glob.glob('*growth_years*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gain_year_count}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_cumul_gain_BGCO2_all_types}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_cumul_gain_AGCO2_BGCO2_all_types}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_ifl_primary}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_planted_forest_type_unmasked}*tif'))
uu.print_log(f' Deleting {len(tiles_to_delete)} tiles...')
for tile_to_delete in tiles_to_delete:
os.remove(tile_to_delete)
uu.print_log(':::::Deleted unneeded tiles')
uu.check_storage()
uu.print_log(':::::Creating carbon pool tiles')
start = datetime.datetime.now()
mp_create_carbon_pools(tile_id_list, cn.CARBON_POOL_EXTENT)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for create_carbon_pools: {elapsed_time}', "\n", "\n")
# Creates gross emissions tiles for biomass+soil by driver, gas, and all emissions combined
if 'gross_emissions_biomass_soil' in actual_stages:
if not cn.SAVE_INTERMEDIATES:
uu.print_log(':::::Freeing up memory for biomass_soil gross emissions creation by deleting unneeded tiles')
tiles_to_delete = []
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_removal_forest_type}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_AGC_2000}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_BGC_2000}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_deadwood_2000}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_litter_2000}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_total_C_2000}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_elevation}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_precip}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_annual_gain_AGC_all_types}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_cumul_gain_AGCO2_all_types}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_cont_eco_processed}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_WHRC_biomass_2000_unmasked}*tif'))
# tiles_to_delete.extend(glob.glob(f'*{cn.pattern_mangrove_biomass_2000}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_removal_forest_type}*tif'))
uu.print_log(f' Deleting {len(tiles_to_delete)} tiles...')
uu.print_log(tiles_to_delete)
for tile_to_delete in tiles_to_delete:
os.remove(tile_to_delete)
uu.print_log(':::::Deleted unneeded tiles')
uu.check_storage()
uu.print_log(':::::Creating gross biomass_soil emissions tiles')
start = datetime.datetime.now()
mp_calculate_gross_emissions(tile_id_list, 'biomass_soil')
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for biomass_soil gross_emissions: {elapsed_time}', "\n", "\n")
# Creates gross emissions tiles for soil only by driver, gas, and all emissions combined
if 'gross_emissions_soil_only' in actual_stages:
if not cn.SAVE_INTERMEDIATES:
uu.print_log(':::::Freeing up memory for soil_only gross emissions creation by deleting unneeded tiles')
tiles_to_delete = []
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_non_co2_all_drivers_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_co2_only_all_drivers_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_commod_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_shifting_ag_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_forestry_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_wildfire_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_urban_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_no_driver_biomass_soil}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_nodes_biomass_soil}*tif'))
uu.print_log(f' Deleting {len(tiles_to_delete)} tiles...')
uu.print_log(tiles_to_delete)
for tile_to_delete in tiles_to_delete:
os.remove(tile_to_delete)
uu.print_log(':::::Deleted unneeded tiles')
uu.check_storage()
uu.print_log(':::::Creating soil_only gross emissions tiles')
start = datetime.datetime.now()
mp_calculate_gross_emissions(tile_id_list, 'soil_only')
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for soil_only gross_emissions: {elapsed_time}', "\n", "\n")
# Creates net flux tiles (gross emissions - gross removals)
if 'net_flux' in actual_stages:
if not cn.SAVE_INTERMEDIATES:
uu.print_log(':::::Freeing up memory for net flux creation by deleting unneeded tiles')
tiles_to_delete = []
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_all_gases_all_drivers_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_non_co2_all_drivers_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_co2_only_all_drivers_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_commod_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_shifting_ag_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_forestry_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_wildfire_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_urban_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_no_driver_soil_only}*tif'))
tiles_to_delete.extend(glob.glob(f'*{cn.pattern_gross_emis_nodes_soil_only}*tif'))
uu.print_log(f' Deleting {len(tiles_to_delete)} tiles...')
for tile_to_delete in tiles_to_delete:
os.remove(tile_to_delete)
uu.print_log(':::::Deleted unneeded tiles')
uu.check_storage()
uu.print_log(':::::Creating net flux tiles')
start = datetime.datetime.now()
mp_net_flux(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for net_flux: {elapsed_time}', "\n", "\n")
# Creates derivative outputs for gross emissions, gross removals, and net flux.
# Creates forest extent and per-pixel tiles at original (0.00025x0.00025 deg) resolution and
# creates aggregated global maps at 0.04x0.04 deg resolution.
# For sensitivity analyses, also creates percent difference and sign change maps compared to standard model net flux.
if 'create_derivative_outputs' in actual_stages:
# aux.xml files need to be deleted because otherwise they'll be included in the aggregation iteration.
# They are created by using check_and_delete_if_empty_light()
uu.print_log(':::::Deleting any aux.xml files')
tiles_to_delete = []
tiles_to_delete.extend(glob.glob('*aux.xml'))
for tile_to_delete in tiles_to_delete:
os.remove(tile_to_delete)
uu.print_log(f':::::Deleted {len(tiles_to_delete)} aux.xml files: {tiles_to_delete}', "\n")
uu.print_log(':::::Creating derivative outputs: forest extent/per-pixel tiles and aggregate maps')
start = datetime.datetime.now()
mp_derivative_outputs(tile_id_list)
end = datetime.datetime.now()
elapsed_time = end - start
uu.check_storage()
uu.print_log(f':::::Processing time for creating derivative outputs: {elapsed_time}', "\n", "\n")
# If no_upload flag is activated, tiles on s3 aren't counted
if not cn.NO_UPLOAD:
uu.print_log(':::::Counting tiles output to each folder')
# Modifies output directory names to make them match those used during the model run.
# The tiles in each of these directories and counted and logged.
# If the model run isn't the standard one, the output directory and file names are changed
if cn.SENSIT_TYPE != 'std':
uu.print_log('Modifying output directory and file name pattern based on sensitivity analysis')
output_dir_list = uu.alter_dirs(cn.SENSIT_TYPE, output_dir_list)
# A date can optionally be provided by the full model script or a run of this script.
# This replaces the date in constants_and_names.
# Only done if output upload is enabled.
if cn.RUN_DATE is not None and cn.NO_UPLOAD is not None:
output_dir_list = uu.replace_output_dir_date(output_dir_list, cn.RUN_DATE)
for output in output_dir_list:
tile_count = uu.count_tiles_s3(output)
uu.print_log(f'Total tiles in {output}: {tile_count}')
script_end = datetime.datetime.now()
script_elapsed_time = script_end - script_start
uu.print_log(f':::::Processing time for entire run: {script_elapsed_time}', "\n")
# If no_upload flag is not activated (by choice or by lack of AWS credentials), output is uploaded
if not cn.NO_UPLOAD:
uu.upload_log()
if __name__ == '__main__':
main()