-
Notifications
You must be signed in to change notification settings - Fork 13
/
features.py
185 lines (156 loc) · 7.75 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# This script extract features and put them in shelve format
import os
import torch
import tqdm
import argparse
import yaml
import re
import itertools
import pickle
import numpy as np
from torch.utils.data import DataLoader
# from graphrcnn.extract_features import extract_visual_features
# from torchvision.datasets.coco import CocoCaptions
# from datasets import CocoCaptionsOnly
from torchvision import transforms
from torchvision.models import resnet18, resnet50, resnet101, resnet152, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn
from transformers import BertTokenizer, BertModel
# from datasets import TextCollator
import shelve
import data
from models.text import EncoderTextBERT
class TextCollator(object):
"""
From a list of samples from the dataset,
returns the batched captions.
This should be passed to the DataLoader
"""
def __call__(self, batch):
transposed_batch = list(zip(*batch))
# images = transposed_batch[0]
captions = transposed_batch[1]
return captions
class FeatureExtractor(object):
def __init__(self, config, split, bs=1, collate_fn=torch.utils.data.dataloader.default_collate):
self.config = config
self.split = split
self.output_feat_fld = os.path.join(config['dataset']['data'], '{}_precomp'.format(config['dataset']['name']))
if not os.path.exists(self.output_feat_fld):
os.makedirs(self.output_feat_fld)
def extract(self):
"""
Extracts features and dump them on a db file.
For text extractors: each file record is a dictionary with keys:
'image_id' (int) and 'features' (np.array K x dim)
For image extractors: each file record is a dictionary with keys:
'boxes' (np.array K x 4), 'scores' (np.array K x 1), 'features' (np.array K x dim)
:return: void
"""
raise NotImplementedError
def get_db_file(self):
"""
:return: the path to the db file for these features
"""
raise NotImplementedError
class HuggingFaceTransformerExtractor(FeatureExtractor):
def __init__(self, config, split, model_name='bert', pretrained='bert-base-uncased', finetuned=None):
super(HuggingFaceTransformerExtractor, self).__init__(config, split, bs=5, collate_fn=TextCollator())
self.pretrained = pretrained
self.finetuned = finetuned
self.model_name = model_name
self.config = config
roots, ids = data.get_paths(config)
data_name = config['dataset']['name']
transform = data.get_transform(data_name, 'val', config)
collate_fn = data.Collate(config)
self.loader = data.get_loader_single(data_name, split,
roots[split]['img'],
roots[split]['cap'],
transform, ids=ids[split],
batch_size=32, shuffle=False,
num_workers=4, collate_fn=collate_fn)
def get_db_file(self):
finetuned_str = "" if not self.finetuned else '_finetuned'
feat_dst_filename = os.path.join(self.output_feat_fld,
'{}_{}_{}{}.db'.format(self.split, self.model_name, self.pretrained, finetuned_str))
print('Hugging Face BERT features filename: {}'.format(feat_dst_filename))
return feat_dst_filename
def extract(self, device='cuda'):
# Load pre-trained model tokenizer (vocabulary) and model itself
if self.model_name == 'bert':
self.config['text-model']['layers'] = 0
self.config['text-model']['pre-extracted'] = False
model = EncoderTextBERT(self.config)
else:
raise ValueError('{} model is not known'.format(self.model))
if self.finetuned:
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
checkpoint = torch.load(self.finetuned, map_location=device)['model']
checkpoint = {k[k.find('.txt_enc.'):].replace('.txt_enc.', ''): v for k, v in checkpoint.items() if '.txt_enc.' in k}
model.load_state_dict(checkpoint, strict=False)
print('BERT model extracted from trained model at {}'.format(self.finetuned))
model.to(device)
model.eval()
feat_dst_filename = self.get_db_file()
prog_id = 0
with shelve.open(feat_dst_filename, flag='n') as db:
for images, captions, img_lengths, cap_lengths, boxes, ids in tqdm.tqdm(self.loader):
captions = captions.cuda()
with torch.no_grad():
_, feats = model(captions, cap_lengths)
# get the features from the last hidden state
feats = feats.cpu().numpy()
word_embs = model.word_embeddings(captions)
word_embs = word_embs.cpu().numpy()
for c, f, w, l, i in zip(captions.cpu().numpy(), feats, word_embs, cap_lengths, ids):
# dump_feats.append(f[:l])
dump_dict = {'image_id': i, 'captions': c, 'features': f[:l], 'wembeddings': w[:l]}
db[str(prog_id)] = dump_dict
prog_id += 1
def get_features_extractor(config, split, method=None, finetuned=None):
if method == 'transformer-bert':
config['text-model']['pre-extracted'] = False
extractor = HuggingFaceTransformerExtractor(config, split, finetuned=finetuned)
# elif method == 'graphrcnn':
# extractor = GraphRcnnFeatureExtractor(dataset_name, dataset_root, split,
# extractor_config['algorithm'])
# elif method == 'resnet':
# extractor = ResnetFeatureExtractor(dataset_name, dataset_root, split,
# extractor_config['depth'], (extractor_config['output-h'],
# extractor_config['output-w']))
# elif method == 'vgg':
# extractor = VGGFeatureExtractor(dataset_name, dataset_root, split,
# extractor_config['depth'])
else:
raise ValueError('Extraction method {} not known!'.format(args.method))
return extractor
def main(args, config):
extractor = get_features_extractor(config, args.split, args.method, args.finetuned)
if os.path.isfile(extractor.get_db_file() + '.dat'):
answ = input("Features {} for {} already existing. Overwrite? (y/n)".format(extractor.get_db_file(), extractor))
if answ == 'y':
print('Using extractor: {}'.format(extractor))
extractor.extract()
else:
print('Skipping {}'.format(extractor))
else:
extractor.extract()
print('DONE')
if __name__ == '__main__':
arg_parser = argparse.ArgumentParser(description='Extract captioning scores for use as relevance')
arg_parser.add_argument('--config', type=str, help="Which configuration to use. See into 'config' folder")
arg_parser.add_argument('--split', type=str, default="val", help="Dataset split to use")
arg_parser.add_argument('--finetuned', type=str, default=None, help="Optional finetuning checkpoint")
arg_parser.add_argument('method', type=str, help="Which kind of feature you want to extract")
# arg_parser.add_argument('type', type=str, choices=['image','text'], help="Method type")
args = arg_parser.parse_args()
if args.finetuned is not None:
config = torch.load(args.finetuned)['config']
print('Configuration read from checkpoint')
else:
with open(args.config, 'r') as ymlfile:
config = yaml.load(ymlfile)
main(args, config)