This repository has been archived by the owner on Feb 12, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathprocesspool.h
456 lines (417 loc) · 14.6 KB
/
processpool.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#ifndef PROCESSPOOL_H_
#define PROCESSPOOL_H_
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/stat.h>
//描述一个子进程的类,m_pid是目标子进程的PID,m_pipefd是
//父进程和子进程通信用的管道
class process
{
public:
process():m_pid(-1) {}
public:
pid_t m_pid;
int m_pipefd[2];
};
//进程池类,将它定义为模板是为了代码复用。其模板参数是处理逻辑任务的类
template <typename T>
class processpool
{
private:
//将构造函数定义为私有的,因此我们只能通过后面的create静态函数来创建processpool实例
processpool(int listenfd, int process_number = 8);
public:
//单体模式,以保证程序最多创建一个processpool实例,这是程序正确处理信号的必要条件
static processpool<T> *create(int listenfd, int process_number = 8)
{
if (!m_instance)
{
m_instance = new processpool<T> (listenfd, process_number);
}
return m_instance;
}
~ processpool()
{
delete [] m_sub_process;
}
//启动进程池
void run();
private:
void setup_sig_pipe();
void run_parent();
void run_child();
private:
//进程池允许的最大子进程数量
static const int MAX_PROCESS_NUMBER = 16;
//每个子进程最多能处理的客户数量
static const int USER_PER_PROCESS = 65536;
//epoll最多能处理的事件数
static const int MAX_EVENT_NUMBER = 10000;
//number of total processes
int m_process_number;
//index of subprocess, begin with 0
int m_idx;
//epoll events table in each process, using m_epollfd to identify
int m_epollfd;
//listening socket fd
int m_listenfd;
// flag of whether subprocess should stop or not
int m_stop;
//varaible of record all subprocess desc
process *m_sub_process;
//static instance of process pool
static processpool<T> *m_instance;
};
template< typename T>
processpool<T> *processpool<T>::m_instance = NULL;
//pipe used to handle signal
static int sig_pipefd[2];
static int setnonblocking(int fd)
{
int old_option = fcntl(fd, F_GETFL);
int new_option = old_option | O_NONBLOCK;
fcntl(fd, F_SETFL, new_option);
return old_option;
}
static void addfd(int epollfd, int fd)
{
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET;
epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
setnonblocking(fd);
}
static void removefd(int epollfd, int fd)
{
epoll_ctl(epollfd, EPOLL_CTL_DEL, fd, 0);
close(fd);
}
static void sig_handler(int sig)
{
int save_errno = errno;
int msg = sig;
send(sig_pipefd[1], (char *)msg, 1, 0);
errno = save_errno;
}
static void addsig(int sig, void(handler)(int), bool restart = true)
{
struct sigaction sa;
memset(&sa, '\0', sizeof(sa));
sa.sa_handler = handler;
if (restart)
{
sa.sa_flags |= SA_RESTART;
}
sigfillset(&sa.sa_mask);
assert(sigaction(sig, &sa, NULL) != -1);
}
//进程池构造函数,参数listenfd是监听socket,它必须在创建进程池之前被创建,否则子进程无法
//直接引用它。参数process_nubmer指定进程池中子进程的数量
template <typename T>
processpool<T>::processpool(int listenfd, int process_number)
:m_listenfd(listenfd), m_process_number(process_number), m_idx(-1), m_stop(false)
{
assert((process_number > 0) && (process_number <= MAX_PROCESS_NUMBER));
m_sub_process = new process[process_number];
assert(m_sub_process);
//创建process_number个子进程,并建立它们和父进程之间的管道
for(int i = 0; i < process_number; i++)
{
int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, m_sub_process[i].m_pipefd);
assert(ret == 0);
m_sub_process[i].m_pid = fork();
assert(m_sub_process[i].m_pid >= 0);
if (m_sub_process[i].m_pid > 0)
{
close(m_sub_process[i].m_pipefd[1]);
continue;
}
else
{
close(m_sub_process[i].m_pipefd[0]);
m_idx = i;
break;
}
}
}
//统一事件源
template<typename T>
void processpool<T>::setup_sig_pipe()
{
//创建epoll事件监听表和信号管道
m_epollfd = epoll_create(5);
assert(m_epollfd != -1);
int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, sig_pipefd);
assert(ret != -1);
setnonblocking(sig_pipefd[1]);
addfd(m_epollfd, sig_pipefd[0]);
//设置信号处理函数
addsig(SIGCHLD, sig_handler);
addsig(SIGTERM, sig_handler);
addsig(SIGINT, sig_handler);
addsig(SIGPIPE, SIG_IGN);
}
//父进程中m_idx值为-1, 子进程中m_idx值大于等于0,
//我们据此判断下来要运行的是父进程代码还是子进程代码
template<typename T>
void processpool<T>::run()
{
if (m_idx != -1)
{
run_child();
return;
}
run_parent();
}
template<typename T>
void processpool<T>::run_child()
{
setup_sig_pipe();
//每个子进程都通过其在进程池中的序号值m_idx找到与父进程通信的管道
int pipefd = m_sub_process[m_idx].m_pipefd[1];
//子进程需要监听管道文件描述符pipefd,
//因为父进程将通过它来通知子进程accept新连接
addfd(m_epollfd, pipefd);
epoll_event events[MAX_EVENT_NUMBER];
T *users = new T [USER_PER_PROCESS];
assert(users);
int number = 0;
int ret = -1;
while(! m_stop)
{
number = epoll_wait(m_epollfd, events, MAX_PROCESS_NUMBER, -1);
if ((number < 0) && (errno != EINTR))
{
printf("epoll failure\n");
break;
}
for(int i = 0; i < number; i++)
{
int sockfd = events[i].data.fd;
if ((sockfd == pipefd) && (events[i].events & EPOLLIN))
{
int client = 0;
//从父、子进程之间的管道读取数据,并将结果保存在变量client中。如果
//读取成功,则表示有新客户连接到来
ret = recv(sockfd, (char *)&client, sizeof(client), 0);
if (((ret < 0) && (errno != EAGAIN)) || ret == 0)
{
continue;
}
else
{
struct sockaddr_in client_address;
socklen_t client_addresslength = sizeof(client_address);
int connfd = accept(m_listenfd, (struct sockaddr*)&client_address, &client_addresslength);
if (connfd < 0)
{
printf("errno is: %d\n", errno);
continue;
}
addfd(m_epollfd, connfd);
//模板类T必须实现init方法,
//以初始化一个客户连接。我们直接使用connfd来索引逻辑处理对象(T类型的对象),
//以提高效率
users[connfd].init(m_epollfd, connfd, client_address);
}
}
//下面处理子进程接收到的信号
else if ((sockfd == sig_pipefd[0]) && (events[i].events & EPOLLIN))
{
int sig;
char signals[1024];
ret = recv(sig_pipefd[0], signals, sizeof(signals), 0);
if (ret < 0)
{
continue;
}
else
{
for(int i = 0; i < ret; i++)
{
switch(signals[i])
{
case SIGCHLD:
{
pid_t pid;
int stat;
while((pid = waitpid(-1, &stat, WNOHANG)) > 0)
{
continue;
}
break;
}
case SIGTERM:
case SIGINT:
{
m_stop = true;
break;
}
default:
{
break;
}
}
}
}
}
//如果是其他可读数据,
//那么必然是客户请求到来。调用逻辑处理对象的process方法处理之一
else if (events[i].events & EPOLLIN)
{
users[sockfd].process();
}
else
{
continue;
}
}
}
delete [] users;
users = NULL;
close(pipefd);
//close(m_listenfd);
////我们将这句话注释掉,以提醒读者:应该m_listenfd的创建者来关闭这个文件描述符(见
//后文),即所谓的“对象(比如一个文件描述符,又或者一段堆内存)由哪个函数创建,
//就应该由哪个函数销毁
close(m_epollfd);
}
template<typename T>
void processpool<T>::run_parent()
{
setup_sig_pipe();
//父进程监听m_listenfd
addfd(m_epollfd, m_listenfd);
epoll_event events[MAX_EVENT_NUMBER];
int sub_process_counter = 0;
int new_conn = 1;
int number = 0;
int ret = -1;
while(!m_stop)
{
number = epoll_wait(m_epollfd, events, MAX_EVENT_NUMBER, -1);
if ((number < 0) && (errno != EINTR))
{
printf("epoll failure\n");
break;
}
for(int i = 0; i < number; i ++)
{
int sockfd = events[i].data.fd;
if (sockfd == m_listenfd)
{
//如果有新连接到来,就采用Round
//Robin方式将其分配给一个子进程处理
int i = sub_process_counter;
do
{
if (m_sub_process[i].m_pid != -1)
{
break;
}
i = (i + 1)%m_process_number;
}
while(i != sub_process_counter);
if (m_sub_process[i].m_pid == -1)
{
m_stop = true;
break;
}
sub_process_counter = (i + 1)%m_process_number;
send(m_sub_process[i].m_pipefd[0],
(char *)&new_conn, sizeof(new_conn), 0);
printf("send request to child %d\n", i);
}
//下面处理父进程接收的信号
else if ((sockfd == sig_pipefd[0]) && (events[i].events & EPOLLIN))
{
int sig;
char signals[1024];
ret = recv(sig_pipefd[0], signals, sizeof(signals), 0);
if(ret <= 0)
{
continue;
}
else
{
for(int i = 0; i < ret; i++)
{
switch(signals[i])
{
case SIGCHLD:
{
pid_t pid;
int stat;
while((pid = waitpid( -1, &stat, WNOHANG)) > 0)
{
for(i = 0; i < m_process_number; i++)
{
//如果进程池中第i个子进程退出了,
//则主进程关闭相应的通信管道,
//并设置相应的m_pid为-1,以标记该子进程已退出
if (m_sub_process[i].m_pid == pid)
{
printf("child %d join\n", i);
close(m_sub_process[i].m_pipefd[0]);
m_sub_process[i].m_pid = -1;
}
}
}
//如果所有子进程都已经退出了,则父进程也退出
m_stop = true;
for(int i = 0; i < m_process_number; ++i)
{
if (m_sub_process[i].m_pid != -1)
{
m_stop = false;
}
}
break;
}
case SIGTERM:
case SIGINT:
{
//如果父进程接收到终止信号,那么就杀死所有子进程,并等待
//它们全部结束。当然,通知子进程结束更好的方法是向父、子进程之间的通信管道发送特殊数据,
//读者不妨自己实现之
printf("kill all the child now\n");
for(int i = 0; i < m_process_number; ++ i)
{
int pid = m_sub_process[i].m_pid;
if (pid != -1)
{
kill(pid, SIGTERM);
}
}
break;
}
default:
{
break;
}
}
}
}
}
else
{
continue;
}
}
}
//close(m_listenfd); //由创建者关闭这个文件描述符(见后文)
close(m_epollfd);
}
#endif