-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
150 lines (118 loc) · 5.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import random
import shutil
import yaml
from attrdict import AttrMap
from tqdm import tqdm
from datetime import datetime
import torch
from torch import nn
from torch.backends import cudnn
from torch import optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torch.nn import functional as F
from data import Dataset
from models.generator import UNet
from models.discriminator import Discriminator
import utils
from utils import gpu_manage, save_image, checkpoint
from validate import test
from log_report import LogReport
from log_report import TestReport
def train(config):
gpu_manage(config)
train_dataset = Dataset(config.train_dir)
val_dataset = Dataset(config.val_dir)
training_data_loader = DataLoader(dataset=train_dataset,
num_workers=config.threads,
batch_size=config.batchsize,
shuffle=True)
val_data_loader = DataLoader(dataset=val_dataset,
num_workers=config.threads,
batch_size=config.test_batchsize,
shuffle=False)
gen = UNet(in_ch=config.in_ch, out_ch=config.out_ch, gpu_ids=config.gpu_ids)
if config.gen_init is not None:
param = torch.load(config.gen_init)
gen.load_state_dict(param)
print('load {} as pretrained model'.format(config.gen_init))
dis = Discriminator(in_ch=config.in_ch, out_ch=config.out_ch, gpu_ids=config.gpu_ids)
if config.dis_init is not None:
param = torch.load(config.dis_init)
dis.load_state_dict(param)
print('load {} as pretrained model'.format(config.dis_init))
opt_gen = optim.Adam(gen.parameters(), lr=config.lr, betas=(config.beta1, 0.999), weight_decay=0.00001)
opt_dis = optim.Adam(dis.parameters(), lr=config.lr, betas=(config.beta1, 0.999), weight_decay=0.00001)
real_a = torch.FloatTensor(config.batchsize, config.in_ch, 256, 256)
real_b = torch.FloatTensor(config.batchsize, config.out_ch, 256, 256)
criterionL1 = nn.L1Loss()
criterionMSE = nn.MSELoss()
criterionSoftplus = nn.Softplus()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if config.cuda:
gen = gen.cuda(0)
dis = dis.cuda(0)
criterionL1 = criterionL1.cuda(0)
criterionMSE = criterionMSE.cuda(0)
criterionSoftplus = criterionSoftplus.cuda(0)
real_a = real_a.cuda(0)
real_b = real_b.cuda(0)
real_a = Variable(real_a)
real_b = Variable(real_b)
logreport = LogReport(log_dir=config.out_dir)
testreport = TestReport(log_dir=config.out_dir)
for epoch in range(1, config.epoch + 1):
print('Epoch', epoch, datetime.now())
for iteration, batch in enumerate(tqdm(training_data_loader)):
real_a, real_b = batch[0], batch[1]
real_a = F.interpolate(real_a, size=256).to(device)
real_b = F.interpolate(real_b, size=256).to(device)
fake_b = gen.forward(real_a)
# Update D
opt_dis.zero_grad()
fake_ab = torch.cat((real_a, fake_b), 1)
pred_fake = dis.forward(fake_ab.detach())
batchsize, _, w, h = pred_fake.size()
real_ab = torch.cat((real_a, real_b), 1)
pred_real = dis.forward(real_ab)
loss_d_fake = torch.sum(criterionSoftplus(pred_fake)) / batchsize / w / h
loss_d_real = torch.sum(criterionSoftplus(-pred_real)) / batchsize / w / h
loss_d = loss_d_fake + loss_d_real
loss_d.backward()
if epoch % config.minimax == 0:
opt_dis.step()
# Update G
opt_gen.zero_grad()
fake_ab = torch.cat((real_a, fake_b), 1)
pred_fake = dis.forward(fake_ab)
loss_g_gan = torch.sum(criterionSoftplus(-pred_fake)) / batchsize / w / h
loss_g = loss_g_gan + criterionL1(fake_b, real_b) * config.lamb
loss_g.backward()
opt_gen.step()
if iteration % 100 == 0:
logreport({
'epoch': epoch,
'iteration': len(training_data_loader) * (epoch - 1) + iteration,
'gen/loss': loss_g.item(),
'dis/loss': loss_d.item(),
})
with torch.no_grad():
log_test = test(config, val_data_loader, gen, criterionMSE, epoch)
testreport(log_test)
if epoch % config.snapshot_interval == 0:
checkpoint(config, epoch, gen, dis)
logreport.save_lossgraph()
testreport.save_lossgraph()
print('Done', datetime.now())
if __name__ == '__main__':
with open('config.yml', 'r') as f:
config = yaml.load(f)
config = AttrMap(config)
utils.make_manager()
n_job = utils.job_increment()
config.out_dir = os.path.join(config.out_dir, '{:06}'.format(n_job))
os.makedirs(config.out_dir)
print('Job number: {:04d}'.format(n_job))
shutil.copyfile('config.yml', os.path.join(config.out_dir, 'config.yml'))
train(config)