-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate-cv-script.py
executable file
·224 lines (165 loc) · 5.39 KB
/
generate-cv-script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/python
from nltk.corpus import wordnet as nlwn
from nltk.corpus.reader.wordnet import information_content
import nltk.corpus.reader.wordnet
import nltk
import sys
import pdb
# sample cv-script entry
#
# ! bond.n.02
# WV monosemouslemma1 monosemouslemma2
# WVI lemma1 lemma2 ; lemma3 lemma4
# P concept.n.01 0.84 ; concept2.n.04 0.95
ic_reader = nltk.corpus.reader.wordnet.WordNetICCorpusReader(nltk.data.find('corpora/wordnet_ic'),'.*\.dat')
ic = ic_reader.ic('ic-bnc-resnik.dat')
HIGH_SIM = 0.7
LOW_SIM = 0.4
def noisy_concepts(concept, concept_lemma_synsets):
noise = []
for s in concept_lemma_synsets:
if s != concept and s.wup_similarity(concept) < HIGH_SIM:
noise.append(s)
return noise
def synset_is_similar_to_any(synset, synset_list):
for s in synset_list:
if s.wup_similarity(synset) > LOW_SIM:
return True
return False
def hyponyms_by_level(child, level=5):
levels = []
levels.append([child])
for l in xrange(1, level):
if len(levels) == l:
levels.append( [] )
for prev_level_hyp in levels[l-1]:
prev_hyp = prev_level_hyp.hyponyms() + prev_level_hyp.instance_hyponyms()
for h in prev_hyp:
if h.wup_similarity(child) >= HIGH_SIM:
levels[l].append(h)
if len(levels[l]) == 0:
break
return levels
def hyponyms_by_level_OLD(child, level=5):
levels = []
levels.append([child])
for l in xrange(1, level):
if len(levels) == l:
levels.append( [] )
for prev_level_hyp in levels[l-1]:
prev_hyp = prev_level_hyp.hyponyms() + prev_level_hyp.instance_hyponyms()
similar_enough = False
for h in prev_hyp:
if h.wup_similarity(child) >= HIGH_SIM:
similar_enough = True
break
if not similar_enough:
break
levels[l].extend(prev_hyp)
if len(levels[l]) == 0:
break
return levels
def hyponyms_by_level_FIXED(child, level=5):
levels = []
levels.append([child])
for l in xrange(1, level):
if len(levels) == l:
levels.append( [] )
has_not_too_similar = False
cand_new_level = []
for prev_level_hyp in levels[l-1]:
prev_hyp = prev_level_hyp.hyponyms() + prev_level_hyp.instance_hyponyms()
cand_new_level.extend(prev_hyp)
if len(prev_hyp) > 0:
similar_enough = False
for h in prev_hyp:
if h.wup_similarity(child) >= HIGH_SIM:
similar_enough = True
break
if not similar_enough:
has_not_too_similar = True
break
if not has_not_too_similar:
levels[l].extend(cand_new_level)
else:
break
return levels
def find_intersectable_child_lemmas(base_synset):
lemma_pairs = []
child_hyponym_levels = hyponyms_by_level(base_synset)
for base_lemma in base_synset.lemmas():
base_lemma_synsets = nlwn.synsets(base_lemma.name(), 'n')
# ignore monosemous lemmas
#if len(base_lemma_synsets) <= 1: continue
noise_synsets = noisy_concepts(base_synset, base_lemma_synsets)
for child_hyp_level in child_hyponym_levels:
for child_synset in child_hyp_level:
for child_lemma in child_synset.lemmas():
if child_lemma == base_lemma: continue
lemma_pair_is_noisy = False
for child_lemma_synset in nlwn.synsets(child_lemma.name(), 'n'):
if child_synset != child_lemma_synset and synset_is_similar_to_any(child_lemma_synset, noise_synsets):
lemma_pair_is_noisy = True
#print 'NOT:', base_synset.name(), base_lemma.name(), child_lemma.name()
if not lemma_pair_is_noisy:
lemma_pairs.append( (base_lemma.name(), child_lemma.name()) )
return set([tuple(sorted(pair)) for pair in lemma_pairs])
def monosemous_lemmas(synset):
ml = []
for lemma in synset.lemmas():
if len(nlwn.synsets(lemma.name(), 'n')) == 1:
ml.append(lemma.name())
return ml
def generate_cv(cvscript_filename):
fout_cv = open(cvscript_filename, 'w')
# handle entity.n.01 specially since it is the only synset with IC 0; the
# others that have IC 0 are simply missing/unknown entries. IC 0 entries
# other than entity.n.01 are handled specially by the algorithm.
#fout_cv.write('! entity.n.01\nWV entity\nWVI\nP\n\n')
for synset in nlwn.all_synsets(pos='n'):
generate_cv_entry(synset, fout_cv)
fout_cv.close()
def generate_cv_entry(synset, fout):
#ml = monosemous_lemmas(synset)
ml = []
# if synset.name() == 'living_thing.n.01':
# pdb.set_trace()
intersectable_lemmas = find_intersectable_child_lemmas(synset)
synset_ic = information_content(synset, ic)
hypernym_names = []
for hypernym in synset.hypernyms() + synset.instance_hypernyms():
hyper_ic = information_content(hypernym, ic)
if synset_ic == 0 or hyper_ic == 0:
if hypernym.name != 'entity.n.01':
shared_ic_ratio = 1.0
else:
shared_ic_ratio = 0.0
else:
shared_ic_ratio = hyper_ic / synset_ic
hypernym_names.append((hypernym.name(), shared_ic_ratio))
fout.write('! %s\n' % synset.name())
fout.write('WV ')
for m in ml:
fout.write('%s ' % m)
fout.write('\nWVI ')
for w1, w2 in intersectable_lemmas:
fout.write('%s %s ; ' % (w1, w2))
fout.write('\nP ')
for p, weight in hypernym_names:
fout.write('%s %f ; ' % (p, weight))
fout.write('\n\n')
def pairs(elem_list):
for i in range(len(elem_list)):
elem1 = elem_list[i]
for offset, elem2 in enumerate(elem_list[i+1:]):
j = offset + i + 1
yield (i, j, elem1, elem2)
def main():
if len(sys.argv) != 2:
print 'Syntax: <filename-out>'
print 'Generates a script to create concept vectors from vector representations of words'
return
filename = sys.argv[1]
generate_cv(filename)
if __name__ == "__main__":
main()