-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
119 lines (99 loc) · 6.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from argparse import ArgumentParser
from dotmap import DotMap
from models.swin_unet import SwinUNet
from utils.utils import PROJECT_ROOT, init_logger
from train import train
from test import test
def main(args):
# Initialize logger
logger = init_logger(experiment_name=args.experiment_name, api_key=args.comet_api_key,
project_name=args.comet_project_name, online=not args.comet_offline)
logger.experiment.log_parameters(args.toDict())
if not args.test_only and args.eval_type == "pretrained":
print("WARNING: you can only test the pretrained model, not train it. Setting test_only=True")
args.test_only = True
# Initialize network
net = SwinUNet(in_chans=3,
embed_dim=args.embed_dim,
depths=args.depths,
num_heads=args.num_heads,
window_size=args.window_size,
mlp_ratio=args.mlp_ratio,
qkv_bias=not args.no_qkv_bias,
qk_scale=args.qk_scale,
drop_rate=args.drop_rate,
attn_drop_rate=args.attn_drop_rate,
drop_path_rate=args.drop_path_rate,
norm_layer=getattr(torch.nn, args.norm_layer),
use_checkpoint=not args.no_checkpoint)
if not args.test_only:
train(args, net, logger)
if args.eval_type == "scratch":
# Load the best checkpoint
checkpoints_path = PROJECT_ROOT / "experiments" / args.experiment_name / "checkpoints"
checkpoint_file = [ckpt_path for ckpt_path in checkpoints_path.glob("*.pth") if "lpips" in ckpt_path.name][0]
checkpoint = checkpoints_path / checkpoint_file
state_dict = torch.load(checkpoint, map_location="cpu")
# Check if the checkpoint is a PyTorch Lightning checkpoint
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
state_dict = {k.replace("net.", "", 1): v for k, v in state_dict.items() if k.startswith("net.")}
elif args.eval_type == "pretrained":
# Load the pretrained checkpoint
net = SwinUNet()
state_dict = torch.load(PROJECT_ROOT / "experiments" / "pretrained_model" / "checkpoint.pth", map_location="cpu")
net.load_state_dict(state_dict, strict=True)
test(args, net, logger)
if __name__ == '__main__':
parser = ArgumentParser()
# General
parser.add_argument("--experiment-name", type=str, required=True, help="Experiment name")
parser.add_argument("--data-base-path", type=str, required=True, help="Base path of the dataset")
parser.add_argument("--devices", type=int, nargs="+", default=[0], help="GPU device ids")
# Training
parser.add_argument("--num-epochs", type=int, default=100, help="Number of epochs")
parser.add_argument("--num-input-frames", type=int, default=5, help="Number of input frames")
parser.add_argument("--num-reference-frames", type=int, default=5, help="Number of reference frames")
parser.add_argument("--train-patch-size", type=int, default=128, help="Patch size for training")
parser.add_argument("--batch-size", type=int, default=2, help="Batch size")
parser.add_argument("--num-workers", type=int, default=20, help="Number of workers for the dataloaders")
parser.add_argument("--lr", type=float, default=2e-5, help="Learning rate")
parser.add_argument("--pixel-loss-weight", type=float, default=200)
parser.add_argument("--perceptual-loss-weight", type=float, default=1)
# Test
parser.add_argument("--test-patch-size", type=int, default=512, help="Patch size for testing")
parser.add_argument("--test-only", default=False, action="store_true", help="Skip training and test only")
parser.add_argument("--eval-type", default="scratch", choices=["scratch", "pretrained"],
help="Whether to test a model trained from scratch or the one pretrained by the authors of the"
"paper. Must be in ['scratch', 'pretrained']")
parser.add_argument("--no-vmaf", default=False, action="store_true", help="Skip VMAF computation")
# Model
parser.add_argument("--embed-dim", type=int, default=96, help="Dimension of the token embeddings")
parser.add_argument("--depths", type=int, nargs="+", default=[2, 2, 6, 2], help="Depths of the Swin Transformer layers")
parser.add_argument("--num-heads", type=int, nargs="+", default=[8, 8, 8, 8], help="Number of attention heads for each layer")
parser.add_argument("--window-size", type=int, nargs="+", default=[2, 8, 8], help="Window size for each layer")
parser.add_argument("--mlp-ratio", type=float, default=4., help="Ratio of the mlp hidden dimension to the embedding dimension")
parser.add_argument("--no-qkv-bias", default=False, action="store_true", help="If True, add a learnable bias to query, key, value")
parser.add_argument("--qk-scale", type=float, default=None, help="Override default qk scale of head_dim ** -0.5 if set")
parser.add_argument("--drop-rate", type=float, default=0.0, help="Dropout rate")
parser.add_argument("--attn-drop-rate", type=float, default=0.0, help="Attention dropout rate")
parser.add_argument("--drop-path-rate", type=float, default=0.0, help="Stochastic depth rate")
parser.add_argument("--norm-layer", type=str, default="LayerNorm", help="Normalization layer from torch.nn")
parser.add_argument("--no-checkpoint", default=False, action="store_true")
# Logging
parser.add_argument("--comet-api-key", type=str, default="", help="Comet ML API key")
parser.add_argument("--comet-project-name", type=str, default="TAPE", help="Comet ML project name")
parser.add_argument("--comet-offline", default=False, action="store_true", help="Enable offline logging only")
args = parser.parse_args()
training_params = {
"benchmark": True,
"precision": 16,
"log_every_n_steps": 50,
"accelerator": "gpu" if torch.cuda.is_available() else "cpu",
"devices": args.devices,
"max_epochs": args.num_epochs,
}
args.training_params = training_params
args = DotMap(vars(args), _dynamic=False)
main(args)