-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathbatch_score.py
74 lines (53 loc) · 1.99 KB
/
batch_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
import argparse
import joblib
from azureml.core import Dataset, Model
from aml_utils import retrieve_workspace
def main(dataset_name, model_name, output_dir, output_file):
ws = retrieve_workspace()
# Get data for inference
dataset = Dataset.get_by_name(ws, dataset_name)
data = dataset.to_pandas_dataframe()
# Get model
try:
model_path = Model.get_model_path(model_name=model_name)
except Exception:
print('Model not found in cache. Trying to download locally')
model_container = Model(ws, name=model_name)
model_path = model_container.download()
print("Loading model...")
with open(model_path, 'rb') as f:
model = joblib.load(f)
print("Preprocessing data...")
data = preprocessing(data)
print("Generating predictions data...")
data['predictions'] = predict(model, data)
print(f"Saving predictions in folder {output_dir}...")
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, output_file)
data.to_csv(output_path, index=False)
print("Finished.")
def preprocessing(data):
# Do your preprocessing here
return data
def predict(model, data):
# Generate your prediction here
return [0] * len(data)
def parse_args(args_list=None):
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-name', type=str, default='<your-dataset-name>')
parser.add_argument('--model-name', type=str, default='<your-model-name>')
parser.add_argument('--output-dir', type=str, default='./outputs')
parser.add_argument('--output-file', type=str, default='predictions.csv')
args_parsed = parser.parse_args(args_list)
return args_parsed
if __name__ == '__main__':
args = parse_args()
main(
model_name=args.model_name,
dataset_name=args.dataset_name,
output_dir=args.output_dir,
output_file=args.output_file
)