-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathdataprep.py
68 lines (46 loc) · 1.77 KB
/
dataprep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import argparse
# import pandas as pd
from azureml.core import Run
import aml_utils
def main(dataset_name, output_train_data, output_test_data):
run = Run.get_context()
ws = aml_utils.retrieve_workspace()
data_raw = aml_utils.get_dataset(ws, dataset_name)
print(f"Loaded dataset with {len(data_raw)} rows:")
print(data_raw.head(2))
print("Preprocessing data...")
data = preprocessing(data_raw)
print("Splitting data into a training and a testing set...")
data_train, data_test = train_test_split(data)
print(f"Saving train dataset in folder {output_train_data}...")
write_output(data_train, output_train_data)
print(f"Saving test dataset in folder {output_test_data}...")
write_output(data_test, output_test_data)
print("Finished.")
def preprocessing(data):
# Do preprocessing here
return data
def train_test_split(data):
# Do train-test split here
train_data, test_data = data.copy(), data.copy()
return train_data, test_data
def write_output(data, output_dir, file_name='dataset.csv'):
os.makedirs(output_dir, exist_ok=True)
file_path = os.path.join(output_dir, file_name)
data.to_csv(file_path)
print('OK')
def parse_args(args_list=None):
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-name', type=str, required=True)
parser.add_argument('--output-train-data', type=str, default='./outputs/train')
parser.add_argument('--output-test-data', type=str, default='./outputs/test')
args_parsed = parser.parse_args(args_list)
return args_parsed
if __name__ == '__main__':
args = parse_args()
main(
dataset_name=args.dataset_name,
output_train_data=args.output_train_data,
output_test_data=args.output_test_data
)