-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain.py
65 lines (46 loc) · 1.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
import argparse
import joblib
import pandas as pd
# ...
from azureml.core import Run
import aml_utils
def main(dataset_path, model_name, output_dir):
run = Run.get_context()
ws = aml_utils.retrieve_workspace()
print("Reading training data...")
data = pd.read_csv(dataset_path)
print("Training model...")
y_train, X_train = split_data_features(data)
model = train(X_train, y_train)
# Optionally also take out validation dataset, do hyperparameter search, log metrics etc.
print(f"Saving model in folder {output_dir}...")
os.makedirs(output_dir, exist_ok=True)
model_path = os.path.join(output_dir, f'{model_name}.pkl')
with open(model_path, 'wb') as f:
joblib.dump(model, f)
print('Finished.')
def split_data_features(data):
# Do your X/y features split here
y_train, X_train = data.iloc[:, 0], data.iloc[:, 1:]
return y_train, X_train
def train(X_train, y_train):
# Do your training here
model = None
return model
def parse_args(args_list=None):
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--model-name', type=str, required=True)
parser.add_argument('--output-dir', type=str, default='./outputs')
args_parsed = parser.parse_args(args_list)
return args_parsed
if __name__ == '__main__':
args = parse_args()
main(
dataset_path=os.path.join(args.dataset, 'dataset.csv'), # Path as defined in dataprep.py
model_name=args.model_name,
output_dir=args.output_dir
)