-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcnn_train.py
219 lines (157 loc) · 7.18 KB
/
cnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
Code for training fully-supervised convolutional neural network (CNN) model for
source localization in reverberant environments
The method implemented here is described in:
1. M.J. Bianco, S. Gannot, E. Fernandez-Grande, P. Gerstoft, "Semi-supervised
source localization in reverberant environments," IEEE Access, Vol. 9, 2021.
DOI: 10.1109/ACCESS.2021.3087697
The code is based on the Pyro probabilistic programming library and Pytorch.
2. E. Bingham et al., "Pyro: Deep Universal Probabilistic Programming,"
Journal of Machine Learning Research, 2018.
3. A. Paszke et al., "Pytorch: An imperative style, high-performance deep
learning library," Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 8024–8035.
If you find this code usefult for your research, please cite (1)--(3).
Michael J. Bianco, July 2021
"""
import argparse
import torch
import torch.nn as nn
import numpy as np
import time
from utils.networks import CNN_yx, input_test
import utils.data_cls as data_cls
import torch.optim as optim
import sys
import json
def train(args,train_obj,valid_obj):
"""
train fully-supervised CNN on labeled RTF-phase sequences
"""
data_loaders1 = train_obj.get_cnn_data(nLabels=args.sup_num,batch_size=args.batch_size,nframes=args.n_seq_frames,nBins=args.num_bins)
data_loaders2 = valid_obj.get_cnn_data(nLabels=args.sup_num,batch_size=args.batch_size,nframes=args.n_seq_frames,nBins=args.num_bins)
loader_train = data_loaders1['sup'] # using only labeled frames for CNN
loader_valid = data_loaders2['sup']
if args.cuda_id:
device = 'cuda:'+ str(args.cuda_id)
else:
device = 'cpu'
use_gpu = True
cnn = CNN_yx(x_size=(args.n_seq_frames,args.num_bins),y_size=len(train_obj._label_set),cnn_sup=True).to(device)
cnn.reset()
LR = args.learning_rate
NUM_EPOCHS = args.num_epochs
criterion = nn.CrossEntropyLoss()
optimizer=optim.Adam(cnn.parameters(),lr=LR)
running_loss_save=[]
running_loss_test_save=[]
acc_save = []
PATH_temp = 'save_models/cnn_temp.cpkt'
loss_min=float('inf')
acc_max=0.
patience_count = 0
cnn.train()
arg_dict = vars(args)
arg_dict['label set']=train_obj._label_set
for epoch in range(NUM_EPOCHS):
running_loss = 0.0
for i, data in enumerate(loader_train, 0):
inputs = data[0]
labels = data[1]
optimizer.zero_grad()
outputs = cnn(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
running_loss_save.append((running_loss/len(loader_train)))
predictions, actuals = [], []
numCases = 0
acc_valid= get_accuracy(loader_valid, cnn)
if acc_valid > acc_max:
arg_dict['model_state_dict'] = cnn.state_dict()
torch.save(arg_dict, PATH_temp)
acc_max = acc_valid
print('saving model to temp')
patience_count = 0
patience_count += 1
if patience_count > 99:
break
str_print = '{} train loss: {}'.format(epoch + 1, running_loss / len(loader_train))
str_print += ' valid accu: {}'.format(acc_valid)
print(str_print)
print('Finished Training')
model_state = arg_dict['model_state_dict']
for key,value in model_state.items():
model_state[key] = value.cpu() # pushing to cpu device as default
arg_dict['model_state_dict']=model_state
# saving final model
arg_dict = torch.load(PATH_temp)
timeLocal=time.localtime()
timePrint=time.asctime(timeLocal).replace(" ", "_").replace(":", "")
PATH_model = 'cnn_model_{}-{}-{}_J{}_{}.cpkt'.format(args.learning_rate, args.num_epochs,\
args.batch_size, args.sup_num, timePrint)
torch.save(arg_dict,args.path_save+PATH_model)
def classifier_fn(model, xs):
"""
give one-hot DOAs from RTF-phase input
:param xs: a batch of scaled vectors of RTF-phase sequences
:return: a batch of the corresponding DOA labels (one-hot representation)
"""
alpha = model.forward(xs)
res, ind = torch.topk(alpha, 1)
ys = ind.flatten()
return ys
def get_accuracy(data_loader, model):
"""
compute the accuracy over the supervised training set or the testing set
"""
predictions, actuals = [], []
numCases = 0
model.eval()
# use the appropriate data loader
for (xs, ys) in data_loader:
# use classification function to compute all predictions for each batch
predictions.append(classifier_fn(model,xs))
actuals.append(ys)
numCases += len(ys)
# compute the number of accurate predictions
accurate_preds = 0
for pred, act in zip(predictions, actuals):
for i in range(pred.size(0)):
v = pred[i] == act[i]
accurate_preds += v
# calculate the accuracy between 0 and 1
accuracy = (accurate_preds * 1.0) / numCases # mjb (len(predictions) * batch_size)
return accuracy
if __name__ == "__main__":
# importing default paths
with open('default_paths.json') as f:
default_dict = json.load(f)
parser = argparse.ArgumentParser(description="Supervised CNN")
parser.add_argument('-cid','--cuda-id', default = None, type = int,
help="use GPU(s) to speed up training")
parser.add_argument('-n', '--num-epochs', default=1000, type=int,
help="number of epochs to run")
parser.add_argument('-nsup', '--sup-num', default=1000,
type=int, help="supervised amount of the data i.e. "
"how many of the RTF-phase sequences have supervised labels")
parser.add_argument('-lr', '--learning-rate', default=0.00005, type=float,
help="learning rate for Adam optimizer")
parser.add_argument('-bs', '--batch-size', default=256, type=int,
help="number of RTF-phase sequences (and DOAs) to be considered in a batch")
parser.add_argument('--output-size', default=19, type=int,
help="number of DOAs")
parser.add_argument('-nbin', '--num-bins',default = 127, type=int)
parser.add_argument('-nseq','--n-seq-frames', default = 31, type=int)
parser.add_argument('-dt','--train-data', default = default_dict['path_data']+default_dict['data_train'])
parser.add_argument('-dv','--valid-data', default = default_dict['path_data']+default_dict['data_valid'])
parser.add_argument('-ps','--path-save',default=default_dict['path_model'], help="path for saving model")
args = parser.parse_args()
input_test((args.n_seq_frames,args.num_bins)) # testing if the input dimensions will work with the networks
# getting data and loaders
data_obj_train = data_cls.DataClass(path=args.train_data,addNoise=True,cuda_id=args.cuda_id,noiseSeed=0,
loader_shuffle = True, norm_factor = np.pi)
data_obj_valid = data_cls.DataClass(path=args.valid_data,addNoise=True, cuda_id=args.cuda_id,noiseSeed=1,
loader_shuffle = True, norm_factor = np.pi)
train(args, data_obj_train, data_obj_valid)