forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComplexHelper.h
97 lines (80 loc) · 3.95 KB
/
ComplexHelper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#pragma once
#include <ATen/core/Tensor.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/view_as_real_native.h>
#include <ATen/ops/view_as_complex_native.h>
#include <utility>
#endif
// WARNING: this header contains non-inline functions and should be only
// included from ONE cpp file
namespace at::native {
// View tensor with new dtype, storage offset, sizes and strides
inline Tensor view_tensor(
const Tensor &tensor, ScalarType dtype,
c10::SymInt offset, SymIntArrayRef sizes, SymIntArrayRef strides) {
Storage storage = tensor.storage();
auto key_set = tensor.key_set().remove(DispatchKey::Conjugate);
auto new_tensor = detail::make_tensor<TensorImpl>(
c10::TensorImpl::VIEW, std::move(storage), key_set, scalarTypeToTypeMeta(dtype));
auto * impl = new_tensor.unsafeGetTensorImpl();
impl->set_sizes_and_strides(sizes, strides, offset);
return new_tensor;
}
inline SymDimVector computeStrideForViewAsReal(SymIntArrayRef oldstride) {
SymDimVector res(oldstride.size() + 1);
for (const auto i : c10::irange(oldstride.size())) {
res[i] = oldstride[i] * 2;
}
res.back() = 1;
return res;
}
inline Tensor _view_as_real_physical(const Tensor& self) {
TORCH_CHECK(self.is_complex(), "view_as_real is only supported for complex tensors");
auto old_sizes = self.sym_sizes();
SymDimVector new_sizes(old_sizes.size() + 1);
std::copy(old_sizes.begin(), old_sizes.end(), new_sizes.begin());
// last dimension will always have two elements containing the real and imag vals
new_sizes.back() = 2;
auto new_strides = computeStrideForViewAsReal(self.sym_strides());
auto new_storage_offset = self.sym_storage_offset() * 2;
const auto float_type = c10::toRealValueType(self.scalar_type());
auto real_tensor = view_tensor(self, float_type, std::move(new_storage_offset), new_sizes, new_strides);
return real_tensor;
}
// expects as input a complex tensor and returns back a tensor
// with corresponding real dtype containing the complex values
// in the last two dimensions
Tensor view_as_real(const Tensor& self) {
TORCH_CHECK(!self.is_conj(), "view_as_real doesn't work on unresolved conjugated tensors. To resolve the conjugate tensor so you can view it as real, use self.resolve_conj(); however, be warned that the resulting tensor will NOT alias the original.");
return _view_as_real_physical(self);
}
inline SymDimVector computeStrideForViewAsComplex(SymIntArrayRef oldstride) {
const auto dim = oldstride.size();
TORCH_CHECK(dim > 0 && oldstride[dim - 1] == 1, "Tensor must have a last dimension with stride 1");
SymDimVector res(dim - 1);
for (const auto i : c10::irange(res.size())) {
TORCH_CHECK(oldstride[i] % 2 == 0, "Tensor must have a stride divisible by 2 for all but last dimension");
res[i] = oldstride[i] / 2;
}
return res;
}
// expects as input a float or double tensor with last dimension of size 2
// and returns back a tensor with corresponding complex dtype
Tensor view_as_complex(const Tensor& self) {
TORCH_CHECK(
self.scalar_type() == kFloat || self.scalar_type() == kDouble || self.scalar_type() == kHalf,
"view_as_complex is only supported for half, float and double tensors, but got a tensor of scalar type: ", self.scalar_type());
auto old_sizes = self.sym_sizes();
TORCH_CHECK(!old_sizes.empty(), "Input tensor must have one or more dimensions");
TORCH_CHECK(old_sizes[old_sizes.size()-1] == 2, "Tensor must have a last dimension of size 2");
SymDimVector new_sizes(old_sizes.begin(), old_sizes.end() - 1);
const auto new_strides = computeStrideForViewAsComplex(self.sym_strides());
const auto complex_type = c10::toComplexType(self.scalar_type());
TORCH_CHECK(self.sym_storage_offset() % 2 == 0, "Tensor must have a storage_offset divisible by 2");
const auto new_storage_offset = self.sym_storage_offset() / 2;
return view_tensor(self, complex_type, new_storage_offset, new_sizes, new_strides);
}
} // namespace at::native