forked from liberation/django-elasticsearch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery.py
463 lines (378 loc) · 14.6 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import copy
from django.conf import settings
from django.db.models import Model
from django.db.models.query import QuerySet
from django.db.models.query import REPR_OUTPUT_SIZE
from django_elasticsearch.client import es_client
class EsQueryset(QuerySet):
"""
Fake Queryset that is supposed to act somewhat like a django Queryset.
"""
MODE_SEARCH = 1
MODE_MLT = 2
def __init__(self, model, fuzziness=None):
self.model = model
self.index = model.es.index
self.doc_type = model.es.doc_type
# config
self.mode = self.MODE_SEARCH
self.mlt_kwargs = None
self.filters = {}
self.extra_body = None
self.facets_fields = None
self.suggest_fields = None
self.search_fields = None
# model.Elasticsearch.ordering -> model._meta.ordering -> _score
if hasattr(self.model.Elasticsearch, 'ordering'):
self.ordering = self.model.Elasticsearch.ordering
else:
self.ordering = getattr(self.model._meta, 'ordering', None)
self.fuzziness = fuzziness
self.ndx = None
self._query = ''
self._deserialize = False
self._start = 0
self._stop = None
# results
self._suggestions = None
self._facets = None
self._result_cache = [] # store
self._total = None
def __deepcopy__(self, memo):
"""
Deep copy of a QuerySet doesn't populate the cache
"""
obj = self.__class__(self.model)
for k, v in self.__dict__.items():
if k not in ['_result_cache', '_facets', '_suggestions', '_total']:
obj.__dict__[k] = copy.deepcopy(v, memo)
return obj
def _clone(self):
# copy everything but the results cache
clone = copy.deepcopy(self) # deepcopy because .filters is immutable
# clone._suggestions = None
# clone._facets = None
clone._result_cache = [] # store
clone._total = None
return clone
def __iter__(self):
self.do_search()
for r in self._result_cache:
yield r
def __repr__(self):
data = list(self[:REPR_OUTPUT_SIZE + 1])
if len(data) > REPR_OUTPUT_SIZE:
data[-1] = "...(remaining elements truncated)..."
return repr(data)
def __getitem__(self, ndx):
if ndx != self.ndx:
self._result_cache = []
if self.is_evaluated:
return self._result_cache
self.ndx = ndx
if type(ndx) is slice:
self._start = ndx.start or 0 # in case it is None because [:X]
self._stop = ndx.stop
elif type(ndx) is int:
self._start = ndx
self._stop = ndx + 1
self.do_search()
if type(ndx) is slice:
return self._result_cache
elif type(ndx) is int:
# Note: 0 because we only fetch the right one
return self._result_cache[0]
def __contains__(self, val):
self.do_search()
return val in self._result_cache
def __and__(self, other):
raise NotImplementedError
def __or__(self, other):
raise NotImplementedError
def __nonzero__(self):
self.count()
return self._total != 0
def __len__(self):
self.do_search()
return len(self._result_cache)
def make_search_body(self):
body = {}
search = {}
if self.fuzziness is None: # beware, could be 0
fuzziness = getattr(settings, 'ELASTICSEARCH_FUZZINESS', 0.5)
else:
fuzziness = self.fuzziness
if self._query:
if self.search_fields and len(self.search_fields):
if len(self.search_fields) > 1:
search['query'] = {
'multi_match': {
'query': self._query,
'fields': [f for f in self.search_fields],
'fuzziness': fuzziness
}
}
else:
search['query'] = {
'match': {
self.search_fields[0]: {
'query': self._query,
'fuzziness': fuzziness
}
}
}
else:
search['query'] = {
'query_string': {
'query': self._query,
'fuzziness': fuzziness
}
}
if self.filters:
# TODO: should we add _cache = true ?!
search_filter = {}
mapping = self.model.es.get_mapping()
for field, value in self.filters.items():
try:
value = value.lower()
except AttributeError:
pass
field, operator = self.sanitize_lookup(field)
try:
is_nested = 'properties' in mapping[field]
except KeyError:
# abstract
is_nested = False
field_name = is_nested and field + ".id" or field
if is_nested and isinstance(value, Model):
value = value.id
if operator == 'exact':
filtr = {'bool': {'must': [{'term': {field_name: value}}]}}
elif operator == 'not':
filtr = {'bool': {'must_not': [{'term': {field_name: value}}]}}
elif operator == 'should':
filtr = {'bool': {operator: [{'term': {field_name: value}}]}}
elif operator == 'contains':
filtr = {'query': {'match': {field_name: {'query': value}}}}
elif operator in ['gt', 'gte', 'lt', 'lte']:
filtr = {'bool': {'must': [{'range': {field_name: {
operator: value}}}]}}
elif operator == 'range':
filtr = {'bool': {'must': [{'range': {field_name: {
'gte': value[0],
'lte': value[1]}}}]}}
elif operator == 'isnull':
if value:
filtr = {'bool': {'must_not': [{'exists': {'field': field_name}}]}}
else:
filtr = {'bool': {'must': [{'exists': {'field': field_name}}]}}
search_filter.update(filtr)
body['query'] = {
'bool': {
"must": search.get('query'),
"filter": search_filter
}
}
else:
body = search
return body
@property
def is_evaluated(self):
return bool(self._result_cache)
@property
def response(self):
self.do_search()
return self._response
def _fetch_all(self):
self.do_search()
def do_search(self):
if self.is_evaluated:
return
body = self.make_search_body()
if self.facets_fields:
aggs = dict([
(field, {'terms':
{'field': field}})
for field in self.facets_fields
])
if self.facets_limit:
aggs[field]['terms']['size'] = self.facets_limit
if self.global_facets:
aggs = {'global_count': {'global': {}, 'aggs': aggs}}
body['aggs'] = aggs
if self.suggest_fields:
suggest = {}
for field_name in self.suggest_fields:
suggest[field_name] = {"text": self._query,
"term": {"field": field_name}}
if self.suggest_limit:
suggest[field_name]["term"]["size"] = self.suggest_limit
body['suggest'] = suggest
if self.ordering:
body['sort'] = [{f: "asc"} if f[0] != '-' else {f[1:]: "desc"}
for f in self.ordering] + ["_score"]
search_params = {
'index': self.index,
'doc_type': self.doc_type
}
if self._start:
search_params['from'] = self._start
if self._stop:
search_params['size'] = self._stop - self._start
if self.extra_body:
body.update(self.extra_body)
search_params['body'] = body
self._body = body
if self.mode == self.MODE_MLT:
# change include's defaults to False
search_params['include'] = self.mlt_kwargs.pop('include', False)
# update search params names
search_params.update(self.mlt_kwargs)
for param in ['type', 'indices', 'types', 'scroll', 'size', 'from']:
if param in search_params:
search_params['search_{0}'.format(param)] = search_params.pop(param)
r = es_client.mlt(**search_params)
else:
if 'from' in search_params:
search_params['from_'] = search_params.pop('from')
r = es_client.search(**search_params)
self._response = r
if self.facets_fields:
if self.global_facets:
self._facets = r['aggregations']['global_count']
else:
self._facets = r['aggregations']
self._suggestions = r.get('suggest')
if self._deserialize:
self._result_cache = [self.model.es.deserialize(e['_source'])
for e in r['hits']['hits']]
else:
self._result_cache = [e['_source'] for e in r['hits']['hits']]
self._max_score = r['hits']['max_score']
self._total = r['hits']['total']
return
def query(self, query):
clone = self._clone()
clone._query = query
return clone
def facet(self, fields, limit=None, use_globals=True):
# TODO: bench global facets !!
clone = self._clone()
clone.facets_fields = fields
clone.facets_limit = limit
clone.global_facets = use_globals
return clone
def suggest(self, fields, limit=None):
clone = self._clone()
clone.suggest_fields = fields
clone.suggest_limit = limit
return clone
def order_by(self, *fields):
clone = self._clone()
clone.ordering = fields
return clone
def filter(self, **kwargs):
clone = self._clone()
clone.filters.update(kwargs)
return clone
def sanitize_lookup(self, lookup):
valid_operators = ['exact', 'not', 'should', 'range', 'gt', 'lt', 'gte', 'lte', 'contains', 'isnull']
words = lookup.split('__')
fields = [word for word in words if word not in valid_operators]
# this is also django's default lookup type
operator = 'exact'
if words[-1] in valid_operators:
operator = words[-1]
return '.'.join(fields), operator
def exclude(self, **kwargs):
clone = self._clone()
filters = {}
# TODO: not __contains, not __range
for lookup, value in kwargs.items():
field, operator = self.sanitize_lookup(lookup)
if operator == 'exact':
filters['{0}__not'.format(field)] = value
elif operator == 'not':
filters[field] = value
elif operator in ['gt', 'gte', 'lt', 'lte']:
inverse_map = {'gt': 'lte', 'gte': 'lt', 'lt': 'gte', 'lte': 'gt'}
filters['{0}__{1}'.format(field, inverse_map[operator])] = value
elif operator == 'isnull':
filters[lookup] = not value
else:
raise NotImplementedError("{0} is not a valid *exclude* lookup type.".format(operator))
clone.filters.update(filters)
return clone
# getters
def all(self):
clone = self._clone()
return clone
def get(self, **kwargs):
pk = kwargs.get('pk', None) or kwargs.get('id', None)
if pk is None:
# maybe it's in a filter, like in django.views.generic.detail
pk = self.filters.get('pk', None) or self.filters.get('id', None)
if pk is None:
raise AttributeError("EsQueryset.get needs to get passed a 'pk' or 'id' parameter.")
r = es_client.get(index=self.index,
doc_type=self.doc_type,
id=pk)
self._response = r
if self._deserialize:
return self.model.es.deserialize(r['_source'])
else:
return r['_source']
def mlt(self, id, **kwargs):
self.mode = self.MODE_MLT
self.mlt_kwargs = kwargs
self.mlt_kwargs['id'] = id
return self
def complete(self, field_name, query):
resp = es_client.suggest(index=self.index,
body={field_name: {
"text": query,
"completion": {
"field": field_name,
# stick to fuzziness settings
"fuzzy": {}
}}})
return [r['text'] for r in resp[field_name][0]['options']]
def update(self):
raise NotImplementedError("Db operational methods have been "
"disabled for Elasticsearch Querysets.")
def delete(self):
raise NotImplementedError("Db operational methods have been "
"disabled for Elasticsearch Querysets.")
@property
def facets(self):
self.do_search()
return self._facets
@property
def suggestions(self):
self.do_search()
return self._suggestions
def count(self):
# if we pass a body without a query, elasticsearch complains
if self._total:
return self._total
if self.mode == self.MODE_MLT:
# Note: there is no count on the mlt api, need to fetch the results
self.do_search()
else:
r = es_client.count(
index=self.index,
doc_type=self.doc_type,
body=self.make_search_body() or None)
self._total = r['count']
return self._total
def deserialize(self):
self._deserialize = True
return self
def extra(self, body):
# Note: will .update() the body of the query
# so it is possible to override anything
clone = self._clone()
clone.extra_body = body
return clone
def prefetch_related(self):
raise NotImplementedError(".prefetch_related is not available for an EsQueryset.")