This repository has been archived by the owner on Jun 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhyperparameter_tuning.py
151 lines (119 loc) · 5.1 KB
/
hyperparameter_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gc
import numpy as np
from deepsense import neptune
from sklearn.externals import joblib
from steps.base import BaseTransformer
from utils import set_seed
class RandomSearchOptimizer(BaseTransformer):
def __init__(self, TransformerClass, params,
score_func, maximize,
train_input_keys, valid_input_keys,
n_runs,
callbacks=[]):
self.TransformerClass = TransformerClass
self.param_space = create_param_space(params, n_runs)
self.train_input_keys = train_input_keys
self.valid_input_keys = valid_input_keys
self.score_func = score_func
self.maximize = maximize
self.callbacks = callbacks
self.best_transformer = TransformerClass(**self.param_space[0])
def fit(self, **kwargs):
if self.train_input_keys:
train_inputs = {input_key: kwargs[input_key] for input_key in self.train_input_keys}
else:
train_inputs = kwargs
X_valid, y_valid = kwargs[self.valid_input_keys[0]], kwargs[self.valid_input_keys[1]]
results = []
for i, param_set in enumerate(self.param_space):
try:
transformer = self.TransformerClass(**param_set)
transformer.fit(**train_inputs)
except Exception:
continue
y_pred_valid = transformer.transform(X_valid)
y_pred_valid_value = list(y_pred_valid.values())[0]
run_score = self.score_func(y_valid, y_pred_valid_value)
results.append((run_score, param_set))
del y_pred_valid, transformer
gc.collect()
for callback in self.callbacks:
callback.on_run_end(score=run_score, params=param_set)
assert len(results) > 0, 'All random search runs failed, check your parameter space'
results_sorted = sorted(results, key=lambda x: x[0])
if self.maximize:
best_score, best_param_set = results_sorted[-1]
else:
best_score, best_param_set = results_sorted[0]
for callback in self.callbacks:
callback.on_search_end(results=results)
self.best_transformer = self.TransformerClass(**best_param_set)
self.best_transformer.fit(**train_inputs)
return self
def transform(self, **kwargs):
return self.best_transformer.transform(**kwargs)
def save(self, filepath):
self.best_transformer.save(filepath)
def load(self, filepath):
self.best_transformer.load(filepath)
return self
def create_param_space(params, n_runs):
seed = np.random.randint(1000)
param_space = []
for i in range(n_runs):
set_seed(seed + i)
param_choice = {}
for param, value in params.items():
if isinstance(value, list):
if len(value) == 2:
mode = 'choice'
else:
mode = value[2]
param_choice[param] = sample_param_space(value[:2], mode)
else:
param_choice[param] = value
param_space.append(param_choice)
return param_space
def sample_param_space(value_range, mode):
range_min, range_max = value_range
if mode == 'choice':
value = np.random.choice(range(range_min, range_max, 1))
elif mode == 'uniform':
value = np.random.uniform(low=range_min, high=range_max)
elif mode == 'log-uniform':
value = np.exp(np.random.uniform(low=np.log(range_min), high=np.log(range_max)))
else:
raise NotImplementedError
return value
class GridSearchCallback:
def on_run_end(self, score, params):
return NotImplementedError
def on_search_end(self, results):
return NotImplementedError
class NeptuneMonitor(GridSearchCallback):
def __init__(self, name):
self.name = name
self.ctx = neptune.Context()
self.highest_params_channel = self._create_text_channel(name='highest params')
self.lowest_params_channel = self._create_text_channel(name='lowest params')
self.run_params_channel = self._create_text_channel(name='run params')
self.run_id = 0
def on_run_end(self, score, params):
self.ctx.channel_send('score on run', x=self.run_id, y=score)
self.run_params_channel.send(y=params)
self.run_id += 1
def on_search_end(self, results):
results_sorted = sorted(results, key=lambda x: x[0])
highest_score, highest_param_set = results_sorted[-1]
lowest_score, lowest_param_set = results_sorted[0]
self.ctx.channel_send('highest score', x=0, y=highest_score)
self.ctx.channel_send('lowest score', x=0, y=lowest_score)
self.highest_params_channel.send(y=highest_param_set)
self.lowest_params_channel.send(y=lowest_param_set)
def _create_text_channel(self, name=''):
return self.ctx.create_channel(name=name, channel_type=neptune.ChannelType.TEXT)
class SaveResults(GridSearchCallback):
def __init__(self, filepath):
self.filepath = filepath
def on_search_end(self, results):
joblib.dump(results, self.filepath)