-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.py
447 lines (366 loc) · 14.9 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import os
import yaml
import logging
import torchvision.transforms
import torch
import torch.distributions as dist
import torch.optim as optim
import numpy as np
import misc
import field_tfs
import fields
import dataset
import models
import encoders
import training
import checkpoints
import callbacks
import generation
import transforms
def cfg_f_out_test(cfg):
out_dir = cfg['training']['out_dir']
gen_dir = os.path.join(out_dir, cfg['testing']['out_dir'])
# Output directory
os.makedirs(gen_dir, exist_ok=True)
# Set up the logging format and output path
misc.setup_logging(gen_dir)
# write cfg to file for record
with open(os.path.join(gen_dir, 'cfg.yaml'), 'w') as f:
yaml.dump(cfg, f)
logging.info("cfg is saved at {}".format(os.path.join(gen_dir, 'cfg.yaml')))
logging.info(cfg)
return out_dir, gen_dir
def cfg_f_out(cfg):
out_dir = cfg['training']['out_dir']
# Output directory
os.makedirs(out_dir, exist_ok=True)
# Set up the logging format and output path
misc.setup_logging(out_dir)
# write cfg to file for record
with open(os.path.join(out_dir, 'cfg.yaml'), 'w') as f:
yaml.dump(cfg, f)
logging.info("cfg is saved at {}".format(os.path.join(out_dir, 'cfg.yaml')))
logging.info(cfg)
return out_dir
def cfg_occ_field(cfg_data, mode):
''' Returns the data fields: 'points', (may exist for val/test) 'points_iou', 'voxels'
Args:
mode (str): the mode which is used
cfg (dict): imported yaml config
'''
cfg_occ = cfg_data['occ']
points_transform = field_tfs.SubsamplePoints(cfg_occ['points_subsample'])
data_fields = {}
data_fields['points'] = fields.PointsField(
cfg_occ['points_file'], points_transform,
unpackbits=cfg_occ['points_unpackbits'],
)
if mode in ('val', 'test', 'vis'):
points_iou_file = cfg_occ['points_iou_file']
if points_iou_file is not None:
data_fields['points_iou'] = fields.PointsField(
points_iou_file,
unpackbits=cfg_occ['points_unpackbits'],
)
voxels_file = cfg_occ['voxels_file']
if voxels_file is not None:
data_fields['voxels'] = fields.VoxelsField(voxels_file)
return data_fields
def cfg_inputs_field(cfg_data, mode, inputs_field):
''' Returns the inputs fields.
Args:
mode (str): the mode which is used
cfg (dict): config dictionary
'''
cfg_data_mode = cfg_data[mode]
cfg_data_train = cfg_data['train']
input_type = 'pointcloud' #cfg_data['input_type']
duo_mode = False
# duo_mode = cfg_data['duo_mode']
reg_benchmark_mode = False
reg_mode = cfg_data_mode.get('reg', cfg_data_train['reg'])
if mode == 'test':
reg_benchmark_mode = cfg_data_mode['reg_benchmark']
if input_type == 'pointcloud':
if reg_benchmark_mode:
inputs_field['inputs'] = fields.PointCloudField(
cfg_data['input_bench']['pointcloud_file_1'], transform=None,
)
inputs_field['inputs_2'] = fields.PointCloudField(
cfg_data['input_bench']['pointcloud_file_2'], transform=None,
)
inputs_field['T21'] = fields.RotationField(
cfg_data['input_bench']['T21_file']
)
else:
# assert reg_mode
if reg_mode:
pointcloud_n = cfg_data_mode.get('presamp_n', cfg_data_train['presamp_n'])
transform = field_tfs.SubsamplePointcloud(pointcloud_n)
else:
pointcloud_n = cfg_data_mode.get('presamp_n', cfg_data_train['presamp_n'])
noise = cfg_data_mode.get('noise', cfg_data_train['noise'])
transform = torchvision.transforms.Compose([
field_tfs.SubsamplePointcloud(pointcloud_n),
field_tfs.PointcloudNoise(noise),
])
inputs_field['inputs'] = fields.PointCloudField(
cfg_data['input']['pointcloud_file'], transform,
)
if duo_mode:
inputs_field['T'] = fields.TransformationField(cfg_data['input']['T_file'])
return
def cfg_dataset(cfg, mode):
cfg_data = cfg['data']
cfg_data_mode = cfg_data[mode]
cfg_data_train = cfg_data['train']
reg_benchmark_mode = False
reg_mode = cfg_data_mode.get('reg', cfg_data_train['reg'])
if mode == 'test':
reg_benchmark_mode = cfg_data_mode['reg_benchmark']
dataset_folder = cfg_data['input_bench']['path'] if reg_benchmark_mode else cfg_data['input']['path']
duo_mode = False
categories = None
if mode == 'vis':
split = cfg_data_mode['split']
else:
split = mode
data_field = dict() if reg_benchmark_mode else cfg_occ_field(cfg_data, mode)
cfg_inputs_field(cfg_data, mode, data_field)
if mode == 'test':
data_field['idx'] = fields.IndexField()
# data_field['category'] = data.CategoryField()
if reg_mode:
output_dataset = dataset.Shapes3dDataset(
dataset_folder, data_field,
split=split,
# categories=categories,
)
rot_magmax = cfg_data_mode.get('rotate', cfg_data_train['rotate'])
pcl_noise = cfg_data_mode.get('noise', cfg_data_train['noise'])
resamp_mode = cfg_data_mode.get('resamp', cfg_data_train['resamp'])
output_dataset = dataset.PairedDataset(output_dataset, rot_magmax, duo_mode, reg_benchmark_mode, resamp_mode, pcl_noise)
else:
rot_magmax = cfg_data_mode.get('rotate', cfg_data_train['rotate'])
output_dataset = dataset.Shapes3dDataset(
dataset_folder, data_field,
split=split,
# categories=categories,
rot_magmax=rot_magmax,
)
return output_dataset
def cfg_dataloader(cfg):
config_dataloader = cfg['dataloader']
# Dataset
train_dataset = cfg_dataset(cfg, 'train')
val_dataset = cfg_dataset(cfg, 'val')
vis_dataset = cfg_dataset(cfg, 'vis')
batch_size = config_dataloader['train']['batch_size']
num_workers = config_dataloader['train']['num_workers']
if isinstance(train_dataset, list):
# Mix two datasets (compared with ConcatDataset, we want one batch to only include data from one dataset. )
duo_loader = True
pass
else:
duo_loader = False
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True,
collate_fn=dataset.collate_remove_none,
worker_init_fn=dataset.worker_init_fn)
batch_size_val = config_dataloader['val']['batch_size']
num_workers_val = config_dataloader['val']['num_workers']
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=batch_size_val, num_workers=num_workers_val, shuffle=False,
collate_fn=dataset.collate_remove_none,
worker_init_fn=dataset.worker_init_fn)
batch_size_vis = config_dataloader['vis']['batch_size']
# For visualizations
vis_loader = torch.utils.data.DataLoader(
vis_dataset, batch_size=batch_size_vis, shuffle=False,
collate_fn=dataset.collate_remove_none,
worker_init_fn=dataset.worker_init_fn)
# vis_iter = iter(vis_loader)
return train_dataset, val_dataset, train_loader, val_loader, vis_loader, duo_loader
def cfg_prior_z(config_model, device):
''' Returns prior distribution for latent code z.
Args:
cfg (dict): imported yaml config
device (device): pytorch device
'''
z_dim = config_model['z_dim']
p0_z = dist.Normal(
torch.zeros(z_dim, device=device),
torch.ones(z_dim, device=device)
)
return p0_z
def cfg_model(cfg, device):
config_model = cfg['model']
decoder = config_model['decoder']
encoder = config_model['encoder']
encoder_latent = config_model['encoder_latent']
dim = 3 #cfg['data']['dim']
z_dim = config_model['z_dim']
c_dim = config_model['c_dim']
decoder_kwargs = config_model['decoder_kwargs']
encoder_kwargs = config_model['encoder_kwargs']
encoder_latent_kwargs = config_model['encoder_latent_kwargs']
decoder = models.decoder_dict[decoder](
dim=dim, z_dim=z_dim, c_dim=c_dim,
**decoder_kwargs
)
### in our case, z_dim == 0
if z_dim != 0:
encoder_latent = models.encoder_latent_dict[encoder_latent](
dim=dim, z_dim=z_dim, c_dim=c_dim,
**encoder_latent_kwargs)
else:
encoder_latent = None
encoder = encoders.encoder_dict[encoder](
c_dim=c_dim,
**encoder_kwargs)
p0_z = cfg_prior_z(config_model, device)
model = models.OccupancyNetwork(
decoder, encoder, encoder_latent, p0_z, device=device)
if torch.cuda.device_count() > 1:
logging.info("Let's use {} GPUs!".format(torch.cuda.device_count()))
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = torch.nn.DataParallel(model)
nparameters = sum(p.numel() for p in model.parameters())
# logging.info(model)
logging.info('Total number of parameters: %d' % nparameters)
return model
def cfg_batchprep(config_data, mode, device):
cfg_data_mode = config_data[mode]
cfg_data_train = config_data['train']
reg = cfg_data_mode.get('reg', cfg_data_train['reg'])
reg_benchmark_mode = False
if mode == 'test':
reg_benchmark_mode = cfg_data_mode['reg_benchmark']
# config_batchprep = cfg['batch_prep'][mode]
# config_batchprep_train = cfg['batch_prep']['train']
subsamp = cfg_data_mode.get('subsamp', cfg_data_train['subsamp'])
n2_min = cfg_data_mode.get('n2_min', cfg_data_train['n2_min'])
n2_max = cfg_data_mode.get('n2_max', cfg_data_train['n2_max'])
centralize = cfg_data_mode.get('centralize', cfg_data_train['centralize'])
op_list = []
if reg_benchmark_mode:
pass
elif reg:
n1 = cfg_data_mode.get('n1', cfg_data_train['n1'])
if subsamp:
sub_op = transforms.SubSamplePairBatchIP(n1, n2_min, n2_max, device)
op_list.append(sub_op)
if centralize:
ctr_op = transforms.CentralizePairBatchIP()
op_list.append(ctr_op)
else:
if subsamp:
sub_op = transforms.SubSampleBatchIP(n2_min, n2_max, device)
op_list.append(sub_op)
if centralize:
ctr_op = transforms.CentralizeBatchIP()
op_list.append(ctr_op)
transform = torchvision.transforms.Compose(op_list)
return transform
def cfg_trainer(cfg, device, model):
config_training = cfg['training']
lr = config_training['lr']
logging.info("learning rate: {}".format(lr))
optimizer = optim.Adam(model.parameters(), lr=lr)
lr_schedule = config_training['lr_schedule']
lr_scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, lr_schedule) if lr_schedule is not None else None
out_dir = config_training['out_dir']
vis_dir = os.path.join(out_dir, 'vis')
config_data = cfg['data']
transform_train = cfg_batchprep(config_data, 'train', device)
transform_val = cfg_batchprep(config_data, 'val', device)
transform_vis = cfg_batchprep(config_data, 'vis', device)
reg_train = config_data['train']['reg']
config_trainer = cfg['trainer']
if reg_train:
trainer = training.DualTrainer(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
device=device, input_type='pointcloud',
vis_dir=vis_dir,
transform_train=transform_train,
transform_val=transform_val,
transform_vis=transform_vis,
**config_trainer
)
else:
trainer = training.Trainer(
model, optimizer,
lr_scheduler=lr_scheduler,
device=device, input_type='pointcloud',
vis_dir=vis_dir,
transform_train=transform_train,
transform_val=transform_val,
transform_vis=transform_vis,
**config_trainer
)
return trainer, optimizer, lr_scheduler
def cfg_generator(cfg, device, model):
config_data = cfg['data']
transform_test = cfg_batchprep(config_data, 'test', device)
config_tester = cfg['tester']
generator = generation.Generator3D(
model,
device=device,
transform_test=transform_test,
**config_tester
)
return generator
def cfg_checkpoint(cfg, out_dir, model, optimizer, lr_scheduler):
config_checkpoint = cfg['checkpoint']
checkpoint_io = checkpoints.CheckpointIO(model, optimizer, lr_scheduler, out_dir)
try:
load_dict = checkpoint_io.load('model.pt')
except FileExistsError:
load_dict = dict()
epoch_it = load_dict.get('epoch_it', -1)
it = load_dict.get('it', -1)
model_selection_metric = config_checkpoint['model_selection_metric']
if config_checkpoint['model_selection_mode'] == 'maximize':
model_selection_sign = 1
elif config_checkpoint['model_selection_mode'] == 'minimize':
model_selection_sign = -1
else:
raise ValueError('model_selection_mode must be '
'either maximize or minimize.')
metric_val_best = load_dict.get(
'loss_val_best', -model_selection_sign * np.inf)
if metric_val_best == np.inf or metric_val_best == -np.inf:
metric_val_best = -model_selection_sign * np.inf
checkpoint_io.set_selection_criteria(model_selection_metric, model_selection_sign, metric_val_best)
logging.info('Current best validation metric (%s): %.8f'
% (model_selection_metric, metric_val_best))
return checkpoint_io, epoch_it, it
def cfg_callbacks(cfg, trainer, vis_loader, val_loader, checkpoint_io, writer):
config_callback = cfg['callback']
print_every = config_callback['print_every']
visualize_every = config_callback['visualize_every']
validate_every = config_callback['validate_every']
checkpoint_every = config_callback['checkpoint_every']
autosave_every = config_callback['autosave_every']
callback_list = []
callback_dict = dict()
if print_every > 0:
callback_list.append('print')
callback_dict['print'] = callbacks.PrintCallback(print_every)
if visualize_every > 0:
callback_list.append('visualize')
callback_dict['visualize'] = callbacks.VisualizeCallback(visualize_every, trainer, vis_loader)
if validate_every > 0:
callback_list.append('validation')
callback_dict['validation'] = callbacks.ValidationCallback(
validate_every, checkpoint_io, trainer, val_loader, writer)
if checkpoint_every > 0:
callback_list.append('checkpoint')
callback_dict['checkpoint'] = callbacks.CheckpointsaveCallback(checkpoint_every, checkpoint_io)
if autosave_every > 0:
callback_list.append('autosave')
callback_dict['autosave'] = callbacks.AutosaveCallback(autosave_every, checkpoint_io)
return callback_list, callback_dict