-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathse3.py
executable file
·157 lines (120 loc) · 3.86 KB
/
se3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
""" 3-d rigid body transfomation group and corresponding Lie algebra. """
import torch
from sinc import sinc1, sinc2, sinc3
import so3
def twist_prod(x, y):
x_ = x.view(-1, 6)
y_ = y.view(-1, 6)
xw, xv = x_[:, 0:3], x_[:, 3:6]
yw, yv = y_[:, 0:3], y_[:, 3:6]
zw = so3.cross_prod(xw, yw)
zv = so3.cross_prod(xw, yv) + so3.cross_prod(xv, yw)
z = torch.cat((zw, zv), dim=1)
return z.view_as(x)
def liebracket(x, y):
return twist_prod(x, y)
def mat(x):
# size: [*, 6] -> [*, 4, 4]
x_ = x.view(-1, 6)
w1, w2, w3 = x_[:, 0], x_[:, 1], x_[:, 2]
v1, v2, v3 = x_[:, 3], x_[:, 4], x_[:, 5]
O = torch.zeros_like(w1)
X = torch.stack((
torch.stack(( O, -w3, w2, v1), dim=1),
torch.stack(( w3, O, -w1, v2), dim=1),
torch.stack((-w2, w1, O, v3), dim=1),
torch.stack(( O, O, O, O), dim=1)), dim=1)
return X.view(*(x.size()[0:-1]), 4, 4)
def vec(X):
X_ = X.view(-1, 4, 4)
w1, w2, w3 = X_[:, 2, 1], X_[:, 0, 2], X_[:, 1, 0]
v1, v2, v3 = X_[:, 0, 3], X_[:, 1, 3], X_[:, 2, 3]
x = torch.stack((w1, w2, w3, v1, v2, v3), dim=1)
return x.view(*X.size()[0:-2], 6)
def genvec():
return torch.eye(6)
def genmat():
return mat(genvec())
def exp(x):
x_ = x.view(-1, 6)
w, v = x_[:, 0:3], x_[:, 3:6]
t = w.norm(p=2, dim=1).view(-1, 1, 1)
W = so3.mat(w)
S = W.bmm(W)
I = torch.eye(3).to(w)
# Rodrigues' rotation formula.
#R = cos(t)*eye(3) + sinc1(t)*W + sinc2(t)*(w*w');
# = eye(3) + sinc1(t)*W + sinc2(t)*S
R = I + sinc1(t)*W + sinc2(t)*S
#V = sinc1(t)*eye(3) + sinc2(t)*W + sinc3(t)*(w*w')
# = eye(3) + sinc2(t)*W + sinc3(t)*S
V = I + sinc2(t)*W + sinc3(t)*S
p = V.bmm(v.contiguous().view(-1, 3, 1))
z = torch.Tensor([0, 0, 0, 1]).view(1, 1, 4).repeat(x_.size(0), 1, 1).to(x)
Rp = torch.cat((R, p), dim=2)
g = torch.cat((Rp, z), dim=1)
return g.view(*(x.size()[0:-1]), 4, 4)
def inverse(g):
g_ = g.view(-1, 4, 4)
R = g_[:, 0:3, 0:3]
p = g_[:, 0:3, 3]
Q = R.transpose(1, 2)
q = -Q.matmul(p.unsqueeze(-1))
z = torch.Tensor([0, 0, 0, 1]).view(1, 1, 4).repeat(g_.size(0), 1, 1).to(g)
Qq = torch.cat((Q, q), dim=2)
ig = torch.cat((Qq, z), dim=1)
return ig.view(*(g.size()[0:-2]), 4, 4)
def log(g):
g_ = g.view(-1, 4, 4)
R = g_[:, 0:3, 0:3]
p = g_[:, 0:3, 3]
w = so3.log(R)
H = so3.inv_vecs_Xg_ig(w)
v = H.bmm(p.contiguous().view(-1, 3, 1)).view(-1, 3)
x = torch.cat((w, v), dim=1)
return x.view(*(g.size()[0:-2]), 6)
def transform(g, a):
# g : SE(3), * x 4 x 4
# a : R^3, * x 3[x N]
g_ = g.view(-1, 4, 4)
R = g_[:, 0:3, 0:3].contiguous().view(*(g.size()[0:-2]), 3, 3)
p = g_[:, 0:3, 3].contiguous().view(*(g.size()[0:-2]), 3)
if len(g.size()) == len(a.size()):
b = R.matmul(a) + p.unsqueeze(-1)
else:
b = R.matmul(a.unsqueeze(-1)).squeeze(-1) + p
return b
def group_prod(g, h):
# g, h : SE(3)
g1 = g.matmul(h)
return g1
class ExpMap(torch.autograd.Function):
""" Exp: se(3) -> SE(3)
"""
@staticmethod
def forward(ctx, x):
""" Exp: R^6 -> M(4),
size: [B, 6] -> [B, 4, 4],
or [B, 1, 6] -> [B, 1, 4, 4]
"""
ctx.save_for_backward(x)
g = exp(x)
return g
@staticmethod
def backward(ctx, grad_output):
x, = ctx.saved_tensors
g = exp(x)
gen_k = genmat().to(x)
# Let z = f(g) = f(exp(x))
# dz = df/dgij * dgij/dxk * dxk
# = df/dgij * (d/dxk)[exp(x)]_ij * dxk
# = df/dgij * [gen_k*g]_ij * dxk
dg = gen_k.matmul(g.view(-1, 1, 4, 4))
# (k, i, j)
dg = dg.to(grad_output)
go = grad_output.contiguous().view(-1, 1, 4, 4)
dd = go * dg
grad_input = dd.sum(-1).sum(-1)
return grad_input
Exp = ExpMap.apply
#EOF