-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsinc.py
executable file
·227 lines (177 loc) · 5.1 KB
/
sinc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
""" sinc(t) := sin(t) / t """
import torch
from torch import sin, cos
def sinc1(t):
""" sinc1: t -> sin(t)/t """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t[s] ** 2
r[s] = 1 - t2/6*(1 - t2/20*(1 - t2/42)) # Taylor series O(t^8)
r[c] = sin(t[c]) / t[c]
return r
def sinc1_dt(t):
""" d/dt(sinc1) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t ** 2
r[s] = -t[s]/3*(1 - t2[s]/10*(1 - t2[s]/28*(1 - t2[s]/54))) # Taylor series O(t^8)
r[c] = cos(t[c])/t[c] - sin(t[c])/t2[c]
return r
def sinc1_dt_rt(t):
""" d/dt(sinc1) / t """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t ** 2
r[s] = -1/3*(1 - t2[s]/10*(1 - t2[s]/28*(1 - t2[s]/54))) # Taylor series O(t^8)
r[c] = (cos(t[c]) / t[c] - sin(t[c]) / t2[c]) / t[c]
return r
def rsinc1(t):
""" rsinc1: t -> t/sinc1(t) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t[s] ** 2
r[s] = (((31*t2)/42 + 7)*t2/60 + 1)*t2/6 + 1 # Taylor series O(t^8)
r[c] = t[c] / sin(t[c])
return r
def rsinc1_dt(t):
""" d/dt(rsinc1) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t[s] ** 2
r[s] = ((((127*t2)/30 + 31)*t2/28 + 7)*t2/30 + 1)*t[s]/3 # Taylor series O(t^8)
r[c] = 1/sin(t[c]) - (t[c]*cos(t[c]))/(sin(t[c])*sin(t[c]))
return r
def rsinc1_dt_csc(t):
""" d/dt(rsinc1) / sin(t) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t[s] ** 2
r[s] = t2*(t2*((4*t2)/675 + 2/63) + 2/15) + 1/3 # Taylor series O(t^8)
r[c] = (1/sin(t[c]) - (t[c]*cos(t[c]))/(sin(t[c])*sin(t[c]))) / sin(t[c])
return r
def sinc2(t):
""" sinc2: t -> (1 - cos(t)) / (t**2) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t ** 2
r[s] = 1/2*(1-t2[s]/12*(1-t2[s]/30*(1-t2[s]/56))) # Taylor series O(t^8)
r[c] = (1-cos(t[c]))/t2[c]
return r
def sinc2_dt(t):
""" d/dt(sinc2) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t ** 2
r[s] = -t[s]/12*(1 - t2[s]/5*(1.0/3 - t2[s]/56*(1.0/2 - t2[s]/135))) # Taylor series O(t^8)
r[c] = sin(t[c])/t2[c] - 2*(1-cos(t[c]))/(t2[c]*t[c])
return r
def sinc3(t):
""" sinc3: t -> (t - sin(t)) / (t**3) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t[s] ** 2
r[s] = 1/6*(1-t2/20*(1-t2/42*(1-t2/72))) # Taylor series O(t^8)
r[c] = (t[c]-sin(t[c]))/(t[c]**3)
return r
def sinc3_dt(t):
""" d/dt(sinc3) """
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t[s] ** 2
r[s] = -t[s]/60*(1 - t2/21*(1 - t2/24*(1.0/2 - t2/165))) # Taylor series O(t^8)
r[c] = (3*sin(t[c]) - t[c]*(cos(t[c]) + 2))/(t[c]**4)
return r
def sinc4(t):
""" sinc4: t -> 1/t^2 * (1/2 - sinc2(t))
= 1/t^2 * (1/2 - (1 - cos(t))/t^2)
"""
e = 0.01
r = torch.zeros_like(t)
a = torch.abs(t)
s = a < e
c = (s == 0)
t2 = t ** 2
r[s] = 1/24*(1-t2/30*(1-t2/56*(1-t2/90))) # Taylor series O(t^8)
r[c] = (0.5 - (1 - cos(t))/t2) / t2
class Sinc1_autograd(torch.autograd.Function):
@staticmethod
def forward(ctx, theta):
ctx.save_for_backward(theta)
return sinc1(theta)
@staticmethod
def backward(ctx, grad_output):
theta, = ctx.saved_tensors
grad_theta = None
if ctx.needs_input_grad[0]:
grad_theta = grad_output * sinc1_dt(theta).to(grad_output)
return grad_theta
Sinc1 = Sinc1_autograd.apply
class RSinc1_autograd(torch.autograd.Function):
@staticmethod
def forward(ctx, theta):
ctx.save_for_backward(theta)
return rsinc1(theta)
@staticmethod
def backward(ctx, grad_output):
theta, = ctx.saved_tensors
grad_theta = None
if ctx.needs_input_grad[0]:
grad_theta = grad_output * rsinc1_dt(theta).to(grad_output)
return grad_theta
RSinc1 = RSinc1_autograd.apply
class Sinc2_autograd(torch.autograd.Function):
@staticmethod
def forward(ctx, theta):
ctx.save_for_backward(theta)
return sinc2(theta)
@staticmethod
def backward(ctx, grad_output):
theta, = ctx.saved_tensors
grad_theta = None
if ctx.needs_input_grad[0]:
grad_theta = grad_output * sinc2_dt(theta).to(grad_output)
return grad_theta
Sinc2 = Sinc2_autograd.apply
class Sinc3_autograd(torch.autograd.Function):
@staticmethod
def forward(ctx, theta):
ctx.save_for_backward(theta)
return sinc3(theta)
@staticmethod
def backward(ctx, grad_output):
theta, = ctx.saved_tensors
grad_theta = None
if ctx.needs_input_grad[0]:
grad_theta = grad_output * sinc3_dt(theta).to(grad_output)
return grad_theta
Sinc3 = Sinc3_autograd.apply