-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecommendation.R
88 lines (73 loc) · 2.36 KB
/
Recommendation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
.doCall <- function (fun, args) {
if ((is.character(fun) && length(fun) == 1) || is.name(fun)) {
fun <- get(as.character(fun), envir=.GlobalEnv, mode="function")
}
do.call("fun", lapply(args, enquote))
}
.splitRows <- function (x, ncl) {
lapply(.splitIndices(nrow(x), ncl),
function(i) x[i, , drop=FALSE])
}
.splitIndices <- function (nx, ncl) {
i <- 1:nx
if (ncl == 1) {
i
} else {
fuzz <- min((nx - 1)/1000, 0.4 * nx/ncl)
breaks <- seq(1 - fuzz, nx + fuzz, length=ncl + 1)
structure(split(i, cut(i, breaks)), names=NULL)
}
}
.parMM <- function (cl, A, B) {
if (!all(is.na(cl)) && is.object(cl)) {
R <- .doCall(rbind,
clusterApply(cl=cl, x=.splitRows(A, length(cl)),
get("%*%"), B))
} else {
R <- A %*% B
}
return (R)
}
graphWeights <- function (n, m, A, lambda=0.5, alpha=0.5, S=NA, S1=NA, cl=NA) {
if (nrow(A) != n || ncol(A) != m) {
stop("The matrix A should be an n by m matrix.")
}
has.similarity <- (!all(is.na(S)) && is.matrix(S) && !all(is.na(S1)) && is.matrix(S1))
if (has.similarity) {
if (nrow(S1) != m || ncol(S1) != m) {
stop("The matrix S1 should be an m by m matrix.")
}
if (nrow(S) != n || ncol(S) != n) {
stop("The matrix S should be an n by n matrix.")
}
}
Ky <- diag(1/colSums(A))
Ky[is.infinite(Ky) | is.na(Ky)] <- 0 #BugFix: 1/0=Infinite replaced with 0
kx <- rowSums(A)
Nx <- 1/(matrix(kx, nrow=n, ncol=n, byrow=TRUE)^(lambda) *
matrix(kx, nrow=n, ncol=n, byrow=FALSE)^(1-lambda))
Nx[is.infinite(Nx) | is.na(Nx)] <- 0 #BugFix: 1/0=Infinite replaced with 0
kx[is.infinite(kx) | is.na(kx)] <- 0 #BugFix: 1/0=Infinite replaced with 0
W <- t(.parMM(cl, A, Ky))
W <- .parMM(cl, A, W)
W <- Nx * W
rownames(W) <- rownames(A)
colnames(W) <- rownames(A)
if (has.similarity) {
X5 <- .parMM(cl, A, S1)
X6 <- .parMM(cl, X5, t(A))
X7 <- .parMM(cl, A, matrix(1, nrow=m, ncol=m))
X8 <- .parMM(cl, X7, t(A))
S2 <- X6 / X8
W <- W * (1 + (alpha * S) + ((1-alpha) * S2))
}
W[is.nan(W)] <- 0 #This should never happen
return (W)
}
computeRecommendation <- function (A, lambda=0.5, alpha=0.5, S=NA, S1=NA, cl=NA) {
n <- nrow(A)
m <- ncol(A)
W <- graphWeights(n=n, m=m, A=A, lambda=lambda, alpha=alpha, S=S, S1=S1, cl=cl)
R <- .parMM(cl, W, A)
return (R)
}