-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrag_llama_index_bm25_exl2_app.py
203 lines (156 loc) · 5.88 KB
/
rag_llama_index_bm25_exl2_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
n_cores = os.cpu_count()
os.environ['OMP_NUM_THREADS'] = str(n_cores)
os.environ['MKL_NUM_THREADS'] = str(n_cores)
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="1,0"
from flask import Flask, render_template, request, Response
import fitz
from unidecode import unidecode
import remove_header_footer
#from ctransformers import AutoModelForCausalLM
from model import Exl2ForCausalLM
from transformers import AutoTokenizer
from llama_index.llms import HuggingFaceLLM
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index.prompts import PromptTemplate
from llama_index import (
Document,
SimpleDirectoryReader,
ServiceContext,
StorageContext,
VectorStoreIndex,
#SimpleKeywordTableIndex,
)
from llama_index.retrievers import (
BM25Retriever,
BaseRetriever,
)
from llama_index.query_engine import RetrieverQueryEngine
from llama_index.postprocessor import SentenceTransformerRerank
from llama_index.evaluation import FaithfulnessEvaluator
### APP ###
app = Flask(__name__)
app.static_folder = 'static'
@app.route('/')
def home():
return render_template('index.html')
### MODEL ###
model_name = 'bartowski/dolphin-2.6-mistral-7b-dpo-laser-exl2'
revision = '4_0'
#model_file = 'dolphin-2.6-mistral-7b-dpo-laser-Q8_0.gguf'
emb_model = 'BAAI/bge-large-en-v1.5'
#rerank_model = 'BAAI/bge-reranker-large'
rerank_model = 'BAAI/bge-reranker-base'
model = Exl2ForCausalLM.from_quantized(model_name, revision=revision)
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision, legacy=False)
system_prompt = ('Answer the question solely on the basis of the provided context information. '
'If the answer cannot be inferred from the provided context information, state that the question is out of scope.'
)
prompt_template = '<|im_start|>system\n' + system_prompt + '<|im_end|>\n<|im_start|>user\n{query_str}<|im_end|>\n<|im_start|>assistant\n'
llm = HuggingFaceLLM(
model=model,
tokenizer=tokenizer,
query_wrapper_prompt=PromptTemplate(prompt_template),
context_window=3072,
max_new_tokens=256,
tokenizer_kwargs={'max_length': 4096, 'legacy': False},
model_kwargs={'n_threads': n_cores, 'seed': 0},
generate_kwargs={'do_sample': True, 'temperature': 0.0000001, 'top_p': 0.0000001, 'top_k': 1, 'repetition_penalty': 0.9},
)
### DOCUMENTS ###
pdf_path = 'pdf/SQE_Terms_and_Conditions.pdf'
bounding_box = fitz.Rect(remove_header_footer.remove_hf(pdf_path))
doc = fitz.open(pdf_path)
paragraphs = []
for page in doc:
blocks = page.get_text('blocks', clip=bounding_box)
for block in blocks:
paragraph = unidecode(block[4]).replace('\n', ' ').strip()
paragraph = ' '.join(paragraph.split())
if not paragraph.startswith('<image: ') and not paragraph.endswith('.jpg') and paragraph != '':
paragraphs.append(paragraph)
stops = ['.', '!', '?', ':', '"']
merged_paragraphs = paragraphs[:1]
for p in paragraphs[1:]:
if merged_paragraphs[-1][-1] not in stops:
merged_paragraphs[-1] = merged_paragraphs[-1] + ' ' + p
else:
merged_paragraphs.append(p)
text = '\n\n'.join(merged_paragraphs)
documents = [Document(text=text)]
print('Number of documents:', len(documents))
### QUERY RETRIEVER ###
service_context = ServiceContext.from_defaults(
chunk_size=200,
chunk_overlap=40,
llm=llm,
embed_model=HuggingFaceEmbedding(model_name=emb_model)
)
nodes = service_context.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
vector_index = VectorStoreIndex(
nodes,
storage_context=storage_context,
service_context=service_context,
show_progress=True,
)
'''
keyword_index = SimpleKeywordTableIndex(
nodes,
storage_context=storage_context,
service_context=service_context,
show_progress=True,
)
'''
vector_retriever = vector_index.as_retriever(similarity_top_k=4)
#keyword_retriever = keyword_index.as_retriever(similarity_top_k=9)
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=4)
class HybridRetriever(BaseRetriever):
#def __init__(self, vector_retriever, keyword_retriever, bm25_retriever):
def __init__(self, vector_retriever, bm25_retriever):
self.vector_retriever = vector_retriever
#self.keyword_retriever = keyword_retriever
self.bm25_retriever = bm25_retriever
super().__init__()
def _retrieve(self, query, **kwargs):
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
#keyword_nodes = self.keyword_retriever.retrieve(query, **kwargs)
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
all_nodes = []
node_ids = set()
#for n in bm25_nodes + vector_nodes + keyword_nodes:
for n in bm25_nodes + vector_nodes:
if n.node.node_id not in node_ids:
all_nodes.append(n)
node_ids.add(n.node.node_id)
return all_nodes
#hybrid_retriever = HybridRetriever(vector_retriever, keyword_retriever, bm25_retriever)
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever)
reranker = SentenceTransformerRerank(top_n=8, model=rerank_model)
query_engine = RetrieverQueryEngine.from_args(
retriever=hybrid_retriever,
node_postprocessors=[reranker],
service_context=service_context,
storage_context=storage_context,
response_mode='tree_summarize',
)
evaluator = FaithfulnessEvaluator(service_context=service_context)
### APP FUNCTION ###
@app.route('/get')
def get_bot_response():
try: msg
except NameError: msg = ''
prompt = request.args.get('msg')
response = query_engine.query(prompt)
eval_result = evaluator.evaluate_response(response=response)
if str(eval_result.passing) == 'False':
response = 'I am under the impression that the question is unrelated to our Terms and Conditions. If you think I am wrong, please, rephrase the question.'
else:
response = str(response)
if response[-1] != '.':
response = '.'.join(response.split('.')[:-1]) + '.'
return response
if __name__ == '__main__':
app.run(host = "0.0.0.0", port = 5000, debug = False)