-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadBatvikData.py
305 lines (237 loc) · 13.6 KB
/
readBatvikData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
##################################################
## readBatvikData.py
## A tool for reading the data in the Båtvik seasonal dataset
##################################################
## Author: Jouko Kinnari 2024
## License: MIT License
##################################################
import numpy as np
import os
import pandas as pd
from scipy.spatial.transform import Rotation as ScipyRot
from scipy.interpolate import interp1d
from pyproj import Transformer
def getBatvikData(pathToData, removeAltOffsetWrtMin=False):
# Various pieces of data are stored in different csv files.
pathToGimbalData = os.path.join(pathToData,"gimbal/realtime_data_custom.csv")
pathToMavlinkData = os.path.join(pathToData,"mavlink/AHRS3.csv")
pathToRangefinderData = os.path.join(pathToData,"mavlink/RANGEFINDER.csv")
pathToCameraFrameData = os.path.join(pathToData,"camera/image_timestamps.csv")
pathToServoOutputs = os.path.join(pathToData,"mavlink/SERVO_OUTPUT_RAW.csv")
pathToPressure = os.path.join(pathToData,"mavlink/SCALED_PRESSURE.csv")
pathToPressure2 = os.path.join(pathToData,"mavlink/SCALED_PRESSURE2.csv")
# Read data from csv files using pandas.
servo_outputs = pd.read_csv(pathToServoOutputs, sep=';')
gimbal_df=pd.read_csv(pathToGimbalData, sep=';')
mavlink_df = pd.read_csv(pathToMavlinkData, sep=';')
rangefinder_df = pd.read_csv(pathToRangefinderData, sep=';')
pressures_df = pd.read_csv(pathToPressure, sep=';')
pressure = pressures_df['press_abs'].to_numpy()
pressure_ts = pressures_df['timestamp [s]'].to_numpy()
pressures2_df = pd.read_csv(pathToPressure2, sep=';')
pressure2 = pressures2_df['press_abs'].to_numpy()
pressure2_ts = pressures2_df['timestamp [s]'].to_numpy()
image_timestamps_df = pd.read_csv(pathToCameraFrameData, sep=';')
# Convert to numpy arrays.
image_ts = image_timestamps_df["timestamp [s]"].to_numpy()
mavlink_ts = mavlink_df['timestamp [s]'].to_numpy()
mavlink_roll = mavlink_df['roll'].to_numpy()
mavlink_pitch = mavlink_df['pitch'].to_numpy()
mavlink_yaw = mavlink_df['yaw'].to_numpy()
mavlink_alt = mavlink_df['altitude'].to_numpy()
mavlink_lat = mavlink_df['lat'].to_numpy()
mavlink_lon = mavlink_df['lng'].to_numpy()
# Read filenames.
image_filenames = image_timestamps_df["filename"]
# Remove altitude offset s.t. lowest altitude is recorded as zero.
if (removeAltOffsetWrtMin):
mavlink_alt = mavlink_alt-np.min(mavlink_alt)
rangefinder_ts = rangefinder_df['timestamp [s]'].to_numpy()
rangefinder_distance = rangefinder_df['distance'].to_numpy()
# Read gimbal data.
gimbal_ts = gimbal_df['ts [s]'].to_numpy()
gimbal_microcontroller_ts = gimbal_df['bgcTimestamp [s]'].to_numpy()
gimbal_imuAngleRoll = gimbal_df['imuAngleRoll [deg]'].to_numpy()/180.0*np.pi
gimbal_imuAnglePitch = gimbal_df['imuAnglePitch [deg]'].to_numpy()/180.0*np.pi
gimbal_imuAngleYaw = gimbal_df['imuAngleYaw [deg]'].to_numpy()/180.0*np.pi*(-1)
gimbal_statorRotorAngleRoll = (gimbal_df['statorRotorAngleRoll [deg]'].to_numpy())/180.0*np.pi
gimbal_statorRotorAnglePitch = (gimbal_df['statorRotorAnglePitch [deg]'].to_numpy())/180.0*np.pi
gimbal_statorRotorAngleYaw = (gimbal_df['statorRotorAngleYaw [deg]'].to_numpy())/180.0*np.pi*(-1)
gimbal_gyroX = gimbal_df['gyroX [deg/s]'].to_numpy()
gimbal_gyroY = gimbal_df['gyroY [deg/s]'].to_numpy()
gimbal_gyroZ = gimbal_df['gyroZ [deg/s]'].to_numpy()
gimbal_accX = gimbal_df['accX [m/s^2]'].to_numpy()
gimbal_accY = gimbal_df['accY [m/s^2]'].to_numpy()
gimbal_accZ = gimbal_df['accZ [m/s^2]'].to_numpy()
gimbal_zVect_x = gimbal_df['zVect_x [1]'].to_numpy()
gimbal_zVect_y = gimbal_df['zVect_y [1]'].to_numpy()
gimbal_zVect_z = gimbal_df['zVect_z [1]'].to_numpy()
gimbal_hVect_x = gimbal_df['hVect_x [1]'].to_numpy()
gimbal_hVect_y = gimbal_df['hVect_y [1]'].to_numpy()
gimbal_hVect_z = gimbal_df['hVect_z [1]'].to_numpy()
# Read motor control outputs.
servo_ts = servo_outputs['timestamp [s]'].to_numpy()
servo_1 = servo_outputs['servo1_raw'].to_numpy()
servo_2 = servo_outputs['servo2_raw'].to_numpy()
servo_3 = servo_outputs['servo3_raw'].to_numpy()
servo_4 = servo_outputs['servo4_raw'].to_numpy()
servo_5 = servo_outputs['servo5_raw'].to_numpy()
servo_6 = servo_outputs['servo6_raw'].to_numpy()
servos = np.vstack((servo_1,servo_2,servo_3,servo_4,servo_5,servo_6)).T
# Store all values into a dictionary.
retval = dict()
retval["pressure_ts"] = pressure_ts
retval["pressure"]= pressure
retval["pressure2_ts"]= pressure2_ts
retval["pressure2"]= pressure2
retval["image_ts"]= image_ts
retval["servo_outputs"]=servo_outputs
retval["mavlink_ts"]=mavlink_ts
retval["mavlink_roll"]=mavlink_roll
retval["mavlink_pitch"]=mavlink_pitch
retval["mavlink_yaw"]=mavlink_yaw
retval["mavlink_alt"]=mavlink_alt
retval["mavlink_lat"]=mavlink_lat
retval["mavlink_lon"]=mavlink_lon
retval["rangefinder_ts"]=rangefinder_ts
retval["rangefinder_distance"]=rangefinder_distance
retval["gimbal_ts"]=gimbal_ts
retval["gimbal_microcontroller_ts"]=gimbal_microcontroller_ts
retval["gimbal_imuAngleRoll"]=gimbal_imuAngleRoll
retval["gimbal_imuAnglePitch"]=gimbal_imuAnglePitch
retval["gimbal_imuAngleYaw"]=gimbal_imuAngleYaw
retval["gimbal_statorRotorAngleRoll"]=gimbal_statorRotorAngleRoll
retval["gimbal_statorRotorAnglePitch"]=gimbal_statorRotorAnglePitch
retval["gimbal_statorRotorAngleYaw"]=gimbal_statorRotorAngleYaw
retval["gimbal_gyroX"]=gimbal_gyroX
retval["gimbal_gyroY"]=gimbal_gyroY
retval["gimbal_gyroZ"]=gimbal_gyroZ
retval["gimbal_accX"]=gimbal_accX
retval["gimbal_accY"]=gimbal_accY
retval["gimbal_accZ"]=gimbal_accZ
retval["gimbal_zVect_x"]=gimbal_zVect_x
retval["gimbal_zVect_y"]=gimbal_zVect_y
retval["gimbal_zVect_z"]=gimbal_zVect_z
retval["gimbal_hVect_x"]=gimbal_hVect_x
retval["gimbal_hVect_y"]=gimbal_hVect_y
retval["gimbal_hVect_z"]=gimbal_hVect_z
retval["servo_ts"]=servo_ts
retval["servos"]=servos
retval["image_filenames"] = image_filenames
# From Euler angles, compute rotation matrices for drone body with respect to navigation frame
Rs_nav_body = eulerVectsToR(mavlink_roll, mavlink_pitch, mavlink_yaw, True)
# Also compute camera orientation with respect to body frame
Rs_cam_body = eulerVectsToR(gimbal_statorRotorAngleRoll, gimbal_statorRotorAngleRoll, gimbal_statorRotorAngleYaw, extern=False)
retval["Rs_nav_body"] = Rs_nav_body
retval["Rs_cam_body"] = Rs_cam_body
R_gimbal_transf = np.array([[0,0,1],[-1,0,0],[0,-1,0]])
retval["R_gimbal_transf"] = R_gimbal_transf
# Convert lon, lat, alt to Cartesian coordinates, use
sourceEpsg = 'EPSG:4326' # this is WGS84 - World Geodetic System 1984, used in GPS
targetEpsg = 'EPSG:3067' # this is ETRS89 / TM35FIN(E,N)
coordtransformer_dronecontroller_to_map = Transformer.from_crs(sourceEpsg, targetEpsg)
xs_nav, ys_nav, zs_nav = coordtransformer_dronecontroller_to_map.transform(mavlink_lat/1E7, mavlink_lon/1E7, mavlink_alt)
retval["xs_nav"] = xs_nav
retval["ys_nav"] = ys_nav
retval["zs_nav"] = zs_nav
# Interpolate the positions of the drone at the times when images are acquired.
nav_xyz = np.vstack((xs_nav,ys_nav,zs_nav))
xyz_interpolator = interp1d(mavlink_ts,nav_xyz,bounds_error=False)
xyz_at_image_times = xyz_interpolator(image_ts)
x_at_image_times = xyz_at_image_times[0,:]
y_at_image_times = xyz_at_image_times[1,:]
z_at_image_times = xyz_at_image_times[2,:]
retval["x_at_image_times"] = x_at_image_times
retval["y_at_image_times"] = y_at_image_times
retval["z_at_image_times"] = z_at_image_times
#### Interpolate body orientation at the times when images are acquired.
# Before interpolating Euler angles, get rid of points where angle overflows from -pi to pi or vice versa to avoid interpolation artefacts.
# We do this by going from angle truncated to interval [-pi, pi] to a continuous angle.
mavlink_roll_continuous = fromTruncatedAngleToContinuousAngle(mavlink_roll)
mavlink_pitch_continuous = fromTruncatedAngleToContinuousAngle(mavlink_pitch)
mavlink_yaw_continuous = fromTruncatedAngleToContinuousAngle(mavlink_yaw)
# Now, interpolate and return all angles to interval [-pi, pi]
body_roll_at_image_times = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, mavlink_ts, mavlink_roll_continuous))
body_pitch_at_image_times = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, mavlink_ts, mavlink_pitch_continuous))
body_yaw_at_image_times = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, mavlink_ts, mavlink_yaw_continuous))
retval["body_roll_at_image_times"] = body_roll_at_image_times
retval["body_pitch_at_image_times"] = body_pitch_at_image_times
retval["body_yaw_at_image_times"] = body_yaw_at_image_times
# From Euler angles, compute rotation matrices for drone body with respect to navigation frame
Rs_nav_body_at_image_times = eulerVectsToR(body_roll_at_image_times, body_pitch_at_image_times, body_yaw_at_image_times, True)
retval["Rs_nav_body_at_image_times"] = Rs_nav_body_at_image_times
#### Interpolate camera orientation with respect to body at imaging times
gimbal_roll_continuous = fromTruncatedAngleToContinuousAngle(gimbal_statorRotorAngleRoll)
gimbal_pitch_continuous = fromTruncatedAngleToContinuousAngle(gimbal_statorRotorAnglePitch)
gimbal_yaw_continuous = fromTruncatedAngleToContinuousAngle(gimbal_statorRotorAngleYaw)
gimbal_roll_at_image_times = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, gimbal_ts, gimbal_roll_continuous))
gimbal_pitch_at_image_times = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, gimbal_ts, gimbal_pitch_continuous))
gimbal_yaw_at_image_times = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, gimbal_ts, gimbal_yaw_continuous))
retval["gimbal_roll_at_image_times"] = gimbal_roll_at_image_times
retval["gimbal_pitch_at_image_times"] = gimbal_pitch_at_image_times
retval["gimbal_yaw_at_image_times"] = gimbal_yaw_at_image_times
Rs_cam_body_at_image_times = eulerVectsToR(gimbal_roll_at_image_times, gimbal_pitch_at_image_times, gimbal_yaw_at_image_times, False, True)
retval["Rs_cam_body_at_image_times"] = Rs_cam_body_at_image_times
# Also compute what is the orientation of the camera in the navigation frame.
numImageFrames = len(image_ts)
Rs_cam_nav_at_image_times = []
R_90deg_around_z = ScipyRot.from_euler("z",90,True).as_matrix()
for idx in range(numImageFrames):
R_cam = Rs_cam_body_at_image_times[idx] @ R_gimbal_transf
R_nav_body = Rs_nav_body_at_image_times[idx]
R = R_90deg_around_z @ R_nav_body @ R_cam
Rs_cam_nav_at_image_times.append(R)
retval["Rs_cam_nav_at_image_times"] = Rs_cam_nav_at_image_times
# Using imuAngleRoll and imuAnglePitch, define a rotation matrix between world and camera.
# Find offset between imuAngleYaw and world coordinate system.
bodyYawInit = mavlink_yaw[0]
offsetInit = gimbal_imuAngleYaw[0] - bodyYawInit
gimbal_roll_continuous_imu = fromTruncatedAngleToContinuousAngle(gimbal_imuAngleRoll)
gimbal_pitch_continuous_imu = fromTruncatedAngleToContinuousAngle(gimbal_imuAnglePitch)
gimbal_yaw_continuous_imu = fromTruncatedAngleToContinuousAngle(gimbal_imuAngleYaw)
gimbal_roll_at_image_times_imu = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, gimbal_ts, gimbal_roll_continuous_imu))
gimbal_pitch_at_image_times_imu = fromContinuousAngleToTruncatedAngle(np.interp(image_ts, gimbal_ts, gimbal_pitch_continuous_imu))
gimbal_yaw_at_image_times_rotor = gimbal_yaw_at_image_times - body_yaw_at_image_times
Rs_cam_nav_imu_unrotated = eulerVectsToR(gimbal_roll_at_image_times_imu, gimbal_pitch_at_image_times_imu, gimbal_yaw_at_image_times_rotor, False, True)
Rs_cam_nav_at_image_times_imu = []
for idx in range(numImageFrames):
R_cam = Rs_cam_nav_imu_unrotated[idx] @ R_gimbal_transf
R = R_90deg_around_z @ R_cam
Rs_cam_nav_at_image_times_imu.append(R)
retval["Rs_cam_nav_at_image_times_imu"] = Rs_cam_nav_at_image_times_imu
return retval
def fromContinuousAngleToTruncatedAngle(angle_vect):
N = len(angle_vect)
angle_truncated = np.zeros_like(angle_vect)
for n in np.arange(N):
x = angle_vect[n]
angle_truncated[n] = np.arctan2(np.sin(x),np.cos(x))
return angle_truncated
def fromTruncatedAngleToContinuousAngle(angle_vect, tol=45*np.pi/180):
# Find zero crossings where the value of angle goes from near zero to near 2*pi or vice versa and remove jumps to get a continuous angle.
N = len(angle_vect)
angle_cont = np.zeros_like(angle_vect)
angle_cont[0] = angle_vect[0]
for n in np.arange(0,N-1):
angle_curr = angle_vect[n]
angle_next = angle_vect[n+1]
overflow_compensation = 0
if (angle_curr > np.pi - tol and angle_next < -np.pi + tol):
overflow_compensation = 2*np.pi
elif (angle_curr < -np.pi + tol and angle_next > np.pi - tol):
overflow_compensation = -2*np.pi
angle_cont[n+1] = angle_cont[n] + angle_next - angle_curr + overflow_compensation
return angle_cont
def eulerVectsToR(rolls,pitches,yaws,transpose=False,extern=True):
Rs = []
if (extern):
sequence="ZYX"
else:
sequence="zyx"
for r, p, y in zip(rolls,pitches,yaws):
SR = ScipyRot.from_euler(sequence,[y,p,r])
R = SR.as_matrix()
if (transpose):
R = R.T
Rs.append(R)
return Rs