-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcrypto.go
271 lines (221 loc) · 7.01 KB
/
crypto.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
package zksigma
import (
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"flag"
"fmt"
"io"
"log"
"math/big"
"github.com/mit-dci/zksigma/btcec"
"github.com/mit-dci/zksigma/wire"
)
// ZKPCurveParams is zero knowledge proof curve and params struct, only one instance should be used
type ZKPCurveParams struct {
C elliptic.Curve // Curve
G ECPoint // generator 1
H ECPoint // generator 2
HPoints []ECPoint // HPoints should be initialized with a pre-populated array of the ZKCurve's generator point H multiplied by 2^x where x = [0...63]
}
// DEBUG Indicates whether we output debug information while running the tests. Default off.
var DEBUG = flag.Bool("debug1", false, "Debug output")
type errorProof struct {
t string // proof type that failed
s string // error message
}
func (e *errorProof) Error() string {
return fmt.Sprintf("%v - %v\n", e.t, e.s)
}
func proofStatus(e *errorProof) int {
if *DEBUG && e != nil {
fmt.Printf("ERROR: %v \n", e.Error())
return -1
}
return 0
}
func logStuff(format string, args ...interface{}) {
if *DEBUG {
log.SetFlags(log.Lshortfile)
log.Printf(format, args...)
}
}
// == Keygen ==
func KeyGen(curve elliptic.Curve, base ECPoint) (ECPoint, *big.Int) {
sk, err := rand.Int(rand.Reader, curve.Params().N)
if err != nil {
panic(err)
}
pkX, pkY := curve.ScalarMult(base.X, base.Y, sk.Bytes())
return ECPoint{pkX, pkY}, sk
}
// BigZero contains a cached instance of big.Int with value 0
var BigZero *big.Int
// ============ ECPoint OPERATIONS ==================
type ECPoint struct {
X, Y *big.Int
}
// Zero is a cached variable containing ECPoint{big.NewInt(0), big.NewInt(0)}
var Zero ECPoint // initialized in init()
// Equal returns true if points p (self) and p2 (arg) are the same.
func (p ECPoint) Equal(p2 ECPoint) bool {
if p.X.Cmp(p2.X) == 0 && p2.Y.Cmp(p2.Y) == 0 {
return true
}
return false
}
// Mult multiplies point p by scalar s and returns the resulting point
func (zkpcp ZKPCurveParams) Mult(p ECPoint, s *big.Int) ECPoint {
if p.X == nil && p.Y == nil { // Multiplying a nil point is "pointless". ha.
return ECPoint{nil, nil}
}
modS := new(big.Int).Mod(s, zkpcp.C.Params().N)
// if p.Equal(Zero) {
// logStuff("Mult: Trying to multiple with zero-point!\n")
// return p
// } else
if p.Equal(zkpcp.G) {
X, Y := zkpcp.C.ScalarBaseMult(modS.Bytes())
return ECPoint{X, Y}
}
if p.Equal(zkpcp.H) {
X, Y := zkpcp.C.(*btcec.KoblitzCurve).ScalarBaseMultH(modS.Bytes())
return ECPoint{X, Y}
}
X, Y := zkpcp.C.ScalarMult(p.X, p.Y, modS.Bytes())
return ECPoint{X, Y}
}
// Add adds points p and p2 and returns the resulting point
func (zkpcp ZKPCurveParams) Add(p, p2 ECPoint) ECPoint {
// if p.Equal(Zero) && p2.Equal(Zero) {
// return Zero
// } else
if p.Equal(Zero) && zkpcp.C.IsOnCurve(p2.X, p2.Y) {
return p2
} else if p2.Equal(Zero) && zkpcp.C.IsOnCurve(p.X, p.Y) {
return p
}
X, Y := zkpcp.C.Add(p.X, p.Y, p2.X, p2.Y)
return ECPoint{X, Y}
}
func (zkpcp ZKPCurveParams) Sub(p, p2 ECPoint) ECPoint {
// if p.Equal(Zero) && p2.Equal(Zero) {
// return Zero
// } else
if p.Equal(Zero) && zkpcp.C.IsOnCurve(p2.X, p2.Y) {
return zkpcp.Neg(p2)
} else if p2.Equal(Zero) && zkpcp.C.IsOnCurve(p.X, p.Y) {
return p
}
temp := zkpcp.Neg(p2)
X, Y := zkpcp.C.Add(p.X, p.Y, temp.X, temp.Y)
return ECPoint{X, Y}
}
// Neg returns the additive inverse of point p
func (zkpcp ZKPCurveParams) Neg(p ECPoint) ECPoint {
negY := new(big.Int).Neg(p.Y)
modValue := new(big.Int).Mod(negY, zkpcp.C.Params().P)
return ECPoint{p.X, modValue}
}
func (p ECPoint) Bytes() []byte {
return append(p.X.Bytes(), p.Y.Bytes()...)
}
// WriteECPoint write an ECPoint to io.Writer w
func WriteECPoint(w io.Writer, p ECPoint) error {
err := wire.WriteVarBytes(w, p.X.Bytes())
if err != nil {
return err
}
err = wire.WriteVarBytes(w, p.Y.Bytes())
return err
}
// ReadECPoint reads an ECPoint from io.Reader r
func ReadECPoint(r io.Reader) (ECPoint, error) {
xBytes, err := wire.ReadVarBytes(r, 32, "x")
if err != nil {
return Zero, err
}
yBytes, err := wire.ReadVarBytes(r, 32, "y")
if err != nil {
return Zero, err
}
return ECPoint{X: big.NewInt(0).SetBytes(xBytes), Y: big.NewInt(0).SetBytes(yBytes)}, nil
}
// WriteBigInt write a big.Int to io.Writer w
func WriteBigInt(w io.Writer, b *big.Int) error {
neg := []byte{0x00}
if b.Sign() < 0 {
neg = []byte{0x01}
}
err := wire.WriteVarBytes(w, append(neg, b.Bytes()...))
return err
}
// ReadBigInt reads a big.Int from io.Reader r
func ReadBigInt(r io.Reader) (*big.Int, error) {
bBytes, err := wire.ReadVarBytes(r, 32, "")
if err != nil {
return nil, err
}
newInt := big.NewInt(0).SetBytes(bBytes[1:])
if bBytes[0] == 0x01 {
newInt.Neg(newInt)
}
return newInt, nil
}
// CommitR uses the Public Key (pk) and a random number (r) to
// generate a commitment of r as an ECPoint
func CommitR(zkpcp ZKPCurveParams, pk ECPoint, r *big.Int) ECPoint {
newR := new(big.Int).Mod(r, zkpcp.C.Params().N)
X, Y := zkpcp.C.ScalarMult(pk.X, pk.Y, newR.Bytes()) // {commitR.X,commitR.Y} = newR * {pk.X, pk.Y}
return ECPoint{X, Y}
}
// VerifyR checks if the point in question is a valid commitment of r
// by generating a new point and comparing the two
func VerifyR(zkpcp ZKPCurveParams, rt ECPoint, pk ECPoint, r *big.Int) bool {
p := CommitR(zkpcp, pk, r) // Generate test point (P) using pk and r
return p.Equal(rt)
}
// =============== PEDERSEN COMMITMENTS ================
// PedCommit generates a pedersen commitment of value using the
// generators of zkpcp. It returns the randomness generated for the
// commitment.
func PedCommit(zkpcp ZKPCurveParams, value *big.Int) (ECPoint, *big.Int, error) {
// randomValue = rand() mod N
randomValue, err := rand.Int(rand.Reader, zkpcp.C.Params().N)
if err != nil {
return Zero, nil, err
}
return PedCommitR(zkpcp, value, randomValue), randomValue, nil
}
// PedCommitR generates a Pedersen commitment with a given random value
func PedCommitR(zkpcp ZKPCurveParams, value, randomValue *big.Int) ECPoint {
// modValue = value mod N
modValue := new(big.Int).Mod(value, zkpcp.C.Params().N)
modRandom := new(big.Int).Mod(randomValue, zkpcp.C.Params().N)
// mG, rH :: lhs, rhs
lhs := zkpcp.Mult(zkpcp.G, modValue)
rhs := zkpcp.Mult(zkpcp.H, modRandom)
//mG + rH
return zkpcp.Add(lhs, rhs)
}
// Open checks if the values given result in the given Pedersen commitment
func Open(zkpcp ZKPCurveParams, value, randomValue *big.Int, pcomm ECPoint) bool {
return PedCommitR(zkpcp, value, randomValue).Equal(pcomm)
}
// ====== Generalized Hash Function =========
// GenerateChallenge hashes the passed byte arrays using SHA-256, and then returns
// the resulting hash as a big.Int modulo the order of the curve base point
func GenerateChallenge(zkpcp ZKPCurveParams, arr ...[]byte) *big.Int {
hasher := sha256.New()
for _, v := range arr {
hasher.Write(v)
}
c := new(big.Int).SetBytes(hasher.Sum(nil))
c = new(big.Int).Mod(c, zkpcp.C.Params().N)
return c
}
// ====== init =========
func init() {
BigZero = big.NewInt(0)
Zero = ECPoint{BigZero, BigZero}
}