-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrangeproof.go
356 lines (274 loc) · 9.67 KB
/
rangeproof.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
package zksigma
import (
"bytes"
"crypto/rand"
"crypto/sha256"
"fmt"
"math/big"
"sync"
"github.com/mit-dci/zksigma/wire"
)
// The following was copy-pasted from zkLedger's original implementation by Willy (github.com/wrv)
// TODO: replace rangeproofs of zkLedger with bulletproofs, eventually
///////////////////////
// RANGE PROOFS
type rangeProofTuple struct {
C ECPoint
S *big.Int
}
// RangeProof
// Implementation details from:
// https://blockstream.com/bitcoin17-final41.pdf
// NOTE: To be consistent with our use of Pedersen commitments, we switch the G and H values
// from the above description
//
// Takes in a value and randomness used in a commitment, and produces a proof that
// our value is in range 2^64.
// Range proofs uses ring signatures from Chameleon hashes and Pedersen Commitments
// to do commitments on the bitwise decomposition of our value.
//
type RangeProof struct {
ProofAggregate ECPoint
ProofE *big.Int
ProofTuples []rangeProofTuple
}
type proverInternalData struct {
Rpoints []ECPoint
Bpoints []ECPoint
kScalars []*big.Int
vScalars []*big.Int
}
// proofGenA takes in a waitgroup, index and bit
// returns an Rpoint and Cpoint, and the k value bigint
func proofGenA(zkpcp ZKPCurveParams,
wg *sync.WaitGroup, idx int, bit bool, s *proverInternalData) error {
defer wg.Done()
var err error
// R := s.Rpoints[idx]
// B := s.Bpoints[idx]
// k := stuff.kScalars[index]
// v := stuff.vScalars[index]
if !bit { // If bit is 0, just make a random R = k*H
s.kScalars[idx], err = rand.Int(rand.Reader, zkpcp.C.Params().N) // random k
if err != nil {
return err
}
s.Rpoints[idx] = zkpcp.Mult(zkpcp.H, s.kScalars[idx]) // R is k * H
} else { // if bit is 1, actually do stuff
// get a random ri
s.vScalars[idx], err = rand.Int(rand.Reader, zkpcp.C.Params().N)
if err != nil {
return err
}
// get R as H*ri... what is KC..?
s.Rpoints[idx] = zkpcp.Mult(zkpcp.H, s.vScalars[idx])
// B is htothe[index] plus partial R
s.Bpoints[idx].X, s.Bpoints[idx].Y =
zkpcp.C.Add(zkpcp.HPoints[idx].X, zkpcp.HPoints[idx].Y,
s.Rpoints[idx].X, s.Rpoints[idx].Y)
// random k
s.kScalars[idx], err = rand.Int(rand.Reader, zkpcp.C.Params().N)
if err != nil {
return err
}
// make k*H for hashing
temp := zkpcp.Mult(zkpcp.H, s.kScalars[idx])
// Hash of temp point (why the whole thing..?
hash := sha256.Sum256(append(temp.X.Bytes(), temp.Y.Bytes()...))
ei := new(big.Int).SetBytes(hash[:])
ei.Mod(ei, zkpcp.C.Params().N)
s.Rpoints[idx].X, s.Rpoints[idx].Y =
zkpcp.C.ScalarMult(s.Bpoints[idx].X, s.Bpoints[idx].Y, ei.Bytes())
}
// fmt.Printf("loop %d\n", idx)
return nil
}
// proofGenB takes waitgroup, index, bit, along with the data to operate on
func proofGenB(zkpcp ZKPCurveParams,
wg *sync.WaitGroup, idx int, bit bool, e0 *big.Int, data *proverInternalData) error {
defer wg.Done()
if !bit {
// choose a random value from the integers mod prime
j, err := rand.Int(rand.Reader, zkpcp.C.Params().N)
if err != nil {
return err
}
m2 := new(big.Int).Exp(big.NewInt(2), big.NewInt(int64(idx)), zkpcp.C.Params().N)
// m2 := big.NewInt(1 << uint(idx))
em2 := new(big.Int).Mul(e0, m2)
em2.Mod(em2, zkpcp.C.Params().N)
rhsX, rhsY := zkpcp.C.ScalarBaseMult(em2.Bytes())
lhs := zkpcp.Mult(zkpcp.H, j)
totX, totY := zkpcp.C.Add(lhs.X, lhs.Y, rhsX, rhsY)
hash := sha256.Sum256(append(totX.Bytes(), totY.Bytes()...))
ei := new(big.Int).SetBytes(hash[:]) // get ei
ei.Mod(ei, zkpcp.C.Params().N)
inverseEI := new(big.Int).ModInverse(ei, zkpcp.C.Params().N)
data.vScalars[idx] = new(big.Int).Mul(inverseEI, data.kScalars[idx])
// set the C point for this index to R* inv ei
data.Bpoints[idx] = zkpcp.Mult(data.Rpoints[idx], inverseEI)
// s = k + (kValues[i] * e0) * inverse ei
data.kScalars[idx] = j.Add(
j, new(big.Int).Mul(data.kScalars[idx], new(big.Int).Mul(e0, inverseEI)))
} else { // bit is 1, don't do anything
// s is k + e0*v
data.kScalars[idx] = new(big.Int).Add(
data.kScalars[idx], new(big.Int).Mul(e0, data.vScalars[idx]))
}
return nil
}
// NewRangeProof generates a range proof for the given value
func NewRangeProof(zkpcp ZKPCurveParams, value *big.Int) (*RangeProof, *big.Int, error) {
proof := RangeProof{}
// extend or truncate our value to 64 bits, which is the range we are proving
// If our value is in range, then sum of commitments would equal original commitment
// else, because of truncation, it will be deemed out of range not be equal
if value.Cmp(big.NewInt(1099511627776)) == 1 {
return nil, nil, fmt.Errorf("val %s too big, can only prove up to 1099511627776\n", value.String())
}
proofSize := 40
// check to see if our value is out of range
if proofSize > 40 || value.Cmp(BigZero) == -1 {
//if so, then we can't play
return nil, nil, fmt.Errorf("** Trying to get a value that is out of range! Range Proof will not work!\n")
}
stuff := new(proverInternalData)
stuff.kScalars = make([]*big.Int, proofSize)
stuff.Rpoints = make([]ECPoint, proofSize)
stuff.Bpoints = make([]ECPoint, proofSize)
stuff.vScalars = make([]*big.Int, proofSize)
vTotal := big.NewInt(0)
proof.ProofTuples = make([]rangeProofTuple, proofSize)
// do the loop bValue times
var wg sync.WaitGroup
wg.Add(proofSize)
for i := 0; i < proofSize; i++ {
// TODO: Check errors
go proofGenA(zkpcp, &wg, i, value.Bit(i) == 1, stuff)
}
wg.Wait()
// hash concat of all R values
rHash := sha256.New()
for _, rvalue := range stuff.Rpoints {
rHash.Write(rvalue.X.Bytes())
rHash.Write(rvalue.Y.Bytes())
}
hashed := rHash.Sum(nil)
e0 := new(big.Int).SetBytes(hashed[:])
e0.Mod(e0, zkpcp.C.Params().N)
var AggregatePoint ECPoint
AggregatePoint.X = new(big.Int)
AggregatePoint.Y = new(big.Int)
// go through all 64 part B
wg.Add(proofSize)
for i := 0; i < proofSize; i++ {
// TODO: Check errors
go proofGenB(zkpcp,
&wg, i, value.Bit(i) == 1, e0, stuff)
}
wg.Wait()
for i := 0; i < proofSize; i++ {
// add up to get vTotal scalar
vTotal.Add(vTotal, stuff.vScalars[i])
// add points to get AggregatePoint
AggregatePoint = zkpcp.Add(AggregatePoint, stuff.Bpoints[i])
// copy data to ProofTuples
proof.ProofTuples[i].C = stuff.Bpoints[i]
proof.ProofTuples[i].S = stuff.kScalars[i]
}
proof.ProofE = e0
proof.ProofAggregate = AggregatePoint
return &proof, vTotal, nil
}
type verifyTuple struct {
index int
Rpoint ECPoint
}
// give it a proof tuple, proofE. Get back an Rpoint, and a Cpoint
func verifyGen(zkpcp ZKPCurveParams,
idx int, proofE *big.Int, rpt rangeProofTuple, retbox chan verifyTuple) {
lhs := zkpcp.Mult(zkpcp.H, rpt.S)
rhs2 := zkpcp.Add(rpt.C, zkpcp.Neg(zkpcp.HPoints[idx]))
rhsXYNeg := zkpcp.Neg(zkpcp.Mult(rhs2, proofE))
//s_i * G - e_0 * (C_i - 2^i * H)
tot := zkpcp.Add(lhs, rhsXYNeg)
hash := sha256.Sum256(append(tot.X.Bytes(), tot.Y.Bytes()...))
e1 := new(big.Int).SetBytes(hash[:])
var result verifyTuple
result.index = idx
result.Rpoint = zkpcp.Mult(rpt.C, e1)
retbox <- result
}
func (proof *RangeProof) Verify(zkpcp ZKPCurveParams, comm ECPoint) (bool, error) {
if proof == nil {
return false, &errorProof{"RangeProof.Verify", fmt.Sprintf("passed proof is nil")}
}
proofs := proof.ProofTuples
proofLength := len(proofs)
Rpoints := make([]ECPoint, len(proofs))
totalPoint := ECPoint{big.NewInt(0), big.NewInt(0)}
resultBox := make(chan verifyTuple, 10) // doubt we'll use even 1
for i := 0; i < proofLength; i++ {
// check that proofs are non-nil
if proof.ProofTuples[i].C.X == nil {
return false, &errorProof{"RangeProof.Verify", fmt.Sprintf("entry %d has nil point", i)}
}
if proof.ProofTuples[i].S == nil {
return false, &errorProof{"RangeProof.Verify", fmt.Sprintf("entry %d has nil scalar", i)}
}
// give proof to the verify gorouting
go verifyGen(zkpcp, i, proof.ProofE, proof.ProofTuples[i], resultBox)
}
for i := 0; i < proofLength; i++ {
result := <-resultBox
// only reason we do this is for the hash of the point.
// could do something commutative here too?
Rpoints[result.index] = result.Rpoint
// add to totalpoint here (commutative)
totalPoint = zkpcp.Add(totalPoint, proof.ProofTuples[i].C)
}
rHash := sha256.New()
for _, rpoint := range Rpoints {
rHash.Write(rpoint.X.Bytes())
rHash.Write(rpoint.Y.Bytes())
}
calculatedE0 := rHash.Sum(nil)
if proof.ProofE.Cmp(new(big.Int).SetBytes(calculatedE0[:])) != 0 {
return false, &errorProof{"RangeProof.Verify", fmt.Sprintf("calculatedE0 does not match")}
}
if !totalPoint.Equal(proof.ProofAggregate) {
return false, &errorProof{"RangeProof.Verify", fmt.Sprintf("ProofAggregate does not match totalPoint")}
}
if !comm.Equal(totalPoint) {
return false, &errorProof{"RangeProof.Verify", fmt.Sprintf("ProofAggregate does not match commitment")}
}
return true, nil
}
// Bytes returns a byte slice with a serialized representation of RangeProof proof
func (proof *RangeProof) Bytes() []byte {
var buf bytes.Buffer
WriteECPoint(&buf, proof.ProofAggregate)
WriteBigInt(&buf, proof.ProofE)
wire.WriteVarInt(&buf, uint64(len(proof.ProofTuples)))
for _, t := range proof.ProofTuples {
WriteECPoint(&buf, t.C)
WriteBigInt(&buf, t.S)
}
return buf.Bytes()
}
// NewRangeProofFromBytes returns a RangeProof generated from the
// deserialization of byte slice b
func NewRangeProofFromBytes(b []byte) (*RangeProof, error) {
proof := new(RangeProof)
buf := bytes.NewBuffer(b)
proof.ProofAggregate, _ = ReadECPoint(buf)
proof.ProofE, _ = ReadBigInt(buf)
numTuples, _ := wire.ReadVarInt(buf)
proof.ProofTuples = make([]rangeProofTuple, numTuples)
for i := uint64(0); i < numTuples; i++ {
proof.ProofTuples[i] = rangeProofTuple{}
proof.ProofTuples[i].C, _ = ReadECPoint(buf)
proof.ProofTuples[i].S, _ = ReadBigInt(buf)
}
return proof, nil
}