From a6224577bd4942b4e6797bd5f0517abfda99d126 Mon Sep 17 00:00:00 2001 From: Matthew Kay Date: Tue, 23 Apr 2024 20:04:48 -0500 Subject: [PATCH] more ci fixes --- .github/workflows/R-CMD-check.yaml | 4 ++-- vignettes/tidybayes.Rmd | 28 ++++++++++++++-------------- 2 files changed, 16 insertions(+), 16 deletions(-) diff --git a/.github/workflows/R-CMD-check.yaml b/.github/workflows/R-CMD-check.yaml index e4b28ad4..497a39fc 100755 --- a/.github/workflows/R-CMD-check.yaml +++ b/.github/workflows/R-CMD-check.yaml @@ -51,8 +51,8 @@ jobs: extra-packages: | any::rcmdcheck any::BH - emmeans=?ignore-before-r=4.1.0 - estimability=?ignore-before-r=4.3.0 + any::RcppEigen + emmeans=?ignore-before-r=4.3.0 needs: check # - name: Install system dependencies diff --git a/vignettes/tidybayes.Rmd b/vignettes/tidybayes.Rmd index 4b1d4677..c39d1d2e 100755 --- a/vignettes/tidybayes.Rmd +++ b/vignettes/tidybayes.Rmd @@ -643,9 +643,9 @@ m_linear = lm(response ~ condition, data = ABC) Combining `emmeans::emmeans` with `broom::tidy`, we can generate tidy-format summaries of conditional means from the above model: -```{r} +```{r, eval=requireNamespace("emmeans", quietly = TRUE)} linear_results = m_linear %>% - emmeans(~ condition) %>% + emmeans::emmeans(~ condition) %>% tidy(conf.int = TRUE) %>% mutate(model = "OLS") @@ -733,19 +733,19 @@ m_rst = stan_glm(response ~ condition, data = ABC) We can use `emmeans::emmeans()` to get conditional means with uncertainty: -```{r} +```{r, eval=requireNamespace("emmeans", quietly = TRUE)} m_rst %>% - emmeans( ~ condition) %>% + emmeans::emmeans( ~ condition) %>% gather_emmeans_draws() %>% median_qi() ``` Or `emmeans::emmeans()` with `emmeans::contrast()` to do all pairwise comparisons: -```{r} +```{r, eval=requireNamespace("emmeans", quietly = TRUE)} m_rst %>% - emmeans( ~ condition) %>% - contrast(method = "pairwise") %>% + emmeans::emmeans( ~ condition) %>% + emmeans::contrast(method = "pairwise") %>% gather_emmeans_draws() %>% median_qi() ``` @@ -754,10 +754,10 @@ See the documentation for `emmeans::pairwise.emmc()` for a list of the numerous As before, we can plot the results instead of using a table: -```{r fig.width = tiny_width, fig.height = tiny_height} +```{r fig.width = tiny_width, fig.height = tiny_height, eval=requireNamespace("emmeans", quietly = TRUE)} m_rst %>% - emmeans( ~ condition) %>% - contrast(method = "pairwise") %>% + emmeans::emmeans( ~ condition) %>% + emmeans::contrast(method = "pairwise") %>% gather_emmeans_draws() %>% ggplot(aes(x = .value, y = contrast)) + stat_halfeye() @@ -765,9 +765,9 @@ m_rst %>% `gather_emmeans_draws()` also supports `emm_list` objects, which contain estimates from different reference grids (see `emmeans::ref_grid()` for more information on reference grids). An additional column with the default name of `.grid` is added to indicate the reference grid for each row in the output: -```{r} +```{r, eval=requireNamespace("emmeans", quietly = TRUE)} m_rst %>% - emmeans(pairwise ~ condition) %>% + emmeans::emmeans(pairwise ~ condition) %>% gather_emmeans_draws() %>% median_qi() ``` @@ -789,8 +789,8 @@ Now we can use `emmeans()` and `gather_emmeans_draws()` exactly as we did with ` ```r m_glmm %>% - emmeans( ~ condition, data = ABC) %>% - contrast(method = "pairwise") %>% + emmeans::emmeans( ~ condition, data = ABC) %>% + emmeans::contrast(method = "pairwise") %>% gather_emmeans_draws() %>% ggplot(aes(x = .value, y = contrast)) + stat_halfeye()