-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
124 lines (106 loc) · 5.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import tensorflow as tf
import numpy as np
import random
# get all the files and its label
def get_files(path, args):
dirs = [x[0] for x in os.walk(path)][1:]
training_features = None
validation_features = None
training_labels = None
validation_labels = None
labels_value = []
count = 1
imgs = ['.png', '.jpg', '.jpeg']
# Load data from directory
for d in dirs:
files = [f for f in os.listdir(d)] #load np
for f in files:
# Load img
if any(st in f for st in imgs):
img_raw = tf.io.read_file(d+'/'+f)
img_tensor = tf.image.decode_image(img_raw)
img_tensor = tf.image.resize(img_tensor, [1, args.image_size, args.image_size, args.image_depth])
if random.randint(1, 100) % 10 != 0:
if training_features is None:
training_features = np.copy(img_tensor)
training_labels = count * np.ones((1, 1))
else:
training_features = np.concatenate([training_features, img_tensor], axis=0)
new_labels = count * np.ones((1,1))
training_labels = np.concatenate([training_labels, new_labels], axis = 0)
else:
if validation_features is None:
validation_features = np.copy(img_tensor)
validation_labels = count * np.ones((1,1))
else:
validation_features = np.concatenate([validation_features, img_tensor], axis=0)
new_labels = count * np.ones((1,1))
validation_labels = np.concatenate([validation_labels, new_labels], axis=0)
# Load npy file
else:
data = np.load(d+'/'+f)
data = data.reshape([-1, args.image_size, args.image_size, args.image_depth])
length = data.shape[0]
# concatenate arrays to get the training data and labels
if training_features is None:
training_features = np.copy(data[:length-(length//10),:,:,:])
training_labels = count * np.ones((length-(length//10),1))
else:
training_features = np.concatenate([training_features, data[:length-(length//10),:,:,:]], axis=0)
new_labels = count * np.ones((length-(length//10),1))
training_labels = np.concatenate([training_labels, new_labels], axis=0)
# concatenate arrays to get the validation data and labels
if validation_features is None:
validation_features = np.copy(data[length-(length//10):,:,:,:])
validation_labels = count * np.ones(((length//10),1))
else:
validation_features = np.concatenate((validation_features, data[length-(length//10):,:,:,:]), axis=0)
new_labels = count * np.ones(((length//10),1))
validation_labels = np.concatenate([validation_labels, new_labels], axis=0)
labels_value.append(d.split("\\")[-1])
count += 1
# TODO: Fix memory leak
# Pad the data to fit the batch size
# For features
training_residual_shape = training_features.shape[0] % args.batch_size
validation_residual_shape = validation_features.shape[0] % args.batch_size
if training_residual_shape != 0:
padding = np.zeros((args.batch_size - training_residual_shape, args.image_size, args.image_size, args.image_depth))
new_features = np.concatenate([training_features, padding], axis=0)
training_features = new_features
new_features = None
label_padding = np.zeros((args.batch_size - training_residual_shape, 1))
new_labels = np.concatenate([training_labels, label_padding], axis=0)
training_labels = new_labels
new_labels = None
# For labels
if validation_residual_shape != 0:
padding = np.zeros((args.batch_size - validation_residual_shape, args.image_size, args.image_size, args.image_depth))
new_features = np.concatenate([validation_features, padding], axis=0)
validation_features = new_features
new_features = None
label_padding = np.zeros((args.batch_size - validation_residual_shape, 1))
new_labels = np.concatenate([validation_labels, label_padding], axis=0)
validation_labels = new_labels
new_labels = None
return (training_features.astype('uint8'), training_labels.astype('uint8')), \
(validation_features.astype('uint8'), validation_labels.astype('uint8')), labels_value
# create training data
def get_data(training_features, training_labels, validation_features, validation_labels):
# get training data
train_imgs = tf.constant(training_features)
train_labels = tf.constant(training_labels)
# get validation data
validation_imgs = tf.constant(validation_features)
validation_labels = tf.constant(validation_labels)
training_data = tf.data.Dataset.from_tensor_slices((train_imgs, train_labels))
validation_data = tf.data.Dataset.from_tensor_slices((validation_imgs, validation_labels))
return training_data, validation_data
# (train_features, train_labels), (validataion_features, validataion_labels) = get_files('quickdraw_data')
# image_label_ds = get_data(train_features, train_labels, validataion_features, validataion_labels)
# print('image shape: ', image_label_ds.output_shapes[0])
# print('label shape: ', image_label_ds.output_shapes[1])
# print('types: ', image_label_ds.output_types)
# print()
# print(image_label_ds)