File tree 1 file changed +12
-2
lines changed
1 file changed +12
-2
lines changed Original file line number Diff line number Diff line change @@ -208,7 +208,7 @@ using elementary calculus
208
208
open Filter
209
209
210
210
noncomputable def primeCountingReal (x : ℝ) : ℕ :=
211
- if (x > 0 ) then primeCounting ⌊x⌋.natAbs else 0
211
+ if (x ≤ 0 ) then 0 else primeCounting ⌊x⌋₊
212
212
213
213
def S₁ (x : ℝ) : Set ℕ :=
214
214
{ n | ∀ p, Nat.Prime p → p ∣ n → p ≤ x }
@@ -229,7 +229,17 @@ theorem infinity_of_primes₄ : Tendsto π atTop atTop := by
229
229
sorry
230
230
231
231
-- This might be useful for the proof. Rename as you like.
232
- theorem monotone_primeCountingReal : Monotone primeCountingReal := by sorry
232
+ theorem monotone_primeCountingReal : Monotone primeCountingReal := by
233
+ intro a b hab
234
+ unfold primeCountingReal
235
+ by_cases ha : a ≤ 0
236
+ · by_cases hb : b ≤ 0
237
+ · simp [ha, hb]
238
+ · simp [ha, hb]
239
+ · by_cases hb : b ≤ 0
240
+ · linarith
241
+ · simp [ha, hb]
242
+ exact monotone_primeCounting <| Nat.floor_mono hab
233
243
234
244
lemma H_P4_1 {k p: ℝ} (hk: k > 0 ) (hp: p ≥ k + 1 ): p / (p - 1 ) ≤ (k + 1 ) / k := by
235
245
have h_k_nonzero: k ≠ 0 := ne_iff_lt_or_gt.mpr (Or.inr hk)
You can’t perform that action at this time.
0 commit comments