-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
executable file
·241 lines (208 loc) · 9.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
""" BigGAN: The Authorized Unofficial PyTorch release
Code by A. Brock and A. Andonian
This code is an unofficial reimplementation of
"Large-Scale GAN Training for High Fidelity Natural Image Synthesis,"
by A. Brock, J. Donahue, and K. Simonyan (arXiv 1809.11096).
Let's go.
"""
import functools
from tqdm import tqdm
import torch
import torch.nn as nn
# Import my stuff
import inception_utils
import utils
import train_fns
from sync_batchnorm import patch_replication_callback
import numpy as np
# The main training file. Config is a dictionary specifying the configuration
# of this training run.
def run(config):
# Update the config dict as necessary
# This is for convenience, to add settings derived from the user-specified
# configuration into the config-dict (e.g. inferring the number of classes
# and size of the images from the dataset, passing in a pytorch object
# for the activation specified as a string)
config['resolution'] = utils.imsize_dict[config['dataset']]
config['G_activation'] = utils.activation_dict[config['G_nl']]
config['D_activation'] = utils.activation_dict[config['D_nl']]
# By default, skip init if resuming training.
if config['resume']:
print('Skipping initialization for training resumption...')
config['skip_init'] = True
config = utils.update_config_roots(config)
device = 'cuda'
# Seed RNG
utils.seed_rng(config['seed'])
# Prepare root folders if necessary
utils.prepare_root(config)
# Setup cudnn.benchmark for free speed
torch.backends.cudnn.benchmark = True
# Import the model--this line allows us to dynamically select different files.
model = __import__(config['model'])
experiment_name = (config['experiment_name'] if config['experiment_name']
else utils.name_from_config(config))
print('Experiment name is %s' % experiment_name)
# Next, build the model
G = model.Generator(**config).to(device)
D = model.Discriminator(**config).to(device)
# If using EMA, prepare it
if config['ema']:
print('Preparing EMA for G with decay of {}'.format(config['ema_decay']))
G_ema = model.Generator(**{**config, 'skip_init':True,
'no_optim': True}).to(device)
ema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start'])
else:
G_ema, ema = None, None
# FP16?
if config['G_fp16']:
print('Casting G to float16...')
G = G.half()
if config['ema']:
G_ema = G_ema.half()
if config['D_fp16']:
print('Casting D to fp16...')
D = D.half()
GD = model.G_D(G, D)
print(G)
print(D)
print('Number of params in G: {} D: {}'.format(
*[sum([p.data.nelement() for p in net.parameters()]) for net in [G, D]]))
# Prepare state dict, which holds things like epoch # and itr #
state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0,
'best_IS': 0, 'best_FID': 999999, 'config': config}
# Continue from the last checkpoint, or load the pretrained weights
if config['resume']:
state_dict['best_KMMD'] = 9999
print('Loading weights from the last checkpoint...')
utils.load_weights(G, D, state_dict,
'target',
config['weights_root'], experiment_name,
config['load_weights'] if config['load_weights'] else None,
G_ema if config['ema'] else None,
strict=True,
load_optim=True)
else:
print('Loading the pretrained weights...')
utils.load_weights(G, D, state_dict,
'pretrained',
config['weights_root'], experiment_name,
config['load_weights'] if config['load_weights'] else None,
G_ema if config['ema'] else None,
strict=False,
load_optim=False)
# Re-init the best value of the evaluation metrics for the target data
state_dict['best_ISD'] = 0
state_dict['best_FID'] = 999999
state_dict['best_KMMD'] = 999999
# Load BN parameters of pre-training classes as the prior knowledge for the target data
G.load_previous_knowledge()
# If parallel, parallelize the GD module
if config['parallel']:
GD = nn.DataParallel(GD)
if config['cross_replica']:
patch_replication_callback(GD)
# Prepare loggers for stats; metrics holds test metrics,
# lmetrics holds any desired training metrics.
test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'],
experiment_name)
train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name)
print('Inception Metrics will be saved to {}'.format(test_metrics_fname))
test_log = utils.MetricsLogger(test_metrics_fname,
reinitialize=(not config['resume']))
print('Training Metrics will be saved to {}'.format(train_metrics_fname))
train_log = utils.MyLogger(train_metrics_fname,
reinitialize=(not config['resume']),
logstyle=config['logstyle'])
# Write metadata
utils.write_metadata(config['logs_root'], experiment_name, config, state_dict)
# Prepare data; the Discriminator's batch size is all that needs to be passed
# to the dataloader, as G doesn't require dataloading.
# Note that at every loader iteration we pass in enough data to complete
# a full D iteration (regardless of number of D steps and accumulations)
D_batch_size = (config['batch_size'] * config['num_D_steps']
* config['num_D_accumulations'])
loaders = utils.get_data_loaders(**{**config, 'batch_size': D_batch_size,
'start_itr': state_dict['itr']})
# Prepare inception metrics: FID and IS
get_inception_metrics = inception_utils.prepare_inception_metrics(config['dataset'], config['parallel'], config['no_fid'])
# Prepare noise and randomly sampled label arrays
# Allow for different batch sizes in G
G_batch_size = max(config['G_batch_size'], config['batch_size'])
z_, y_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'],
device=device, fp16=config['G_fp16'])
# Prepare a fixed z & y to see individual sample evolution throghout training
fixed_z, fixed_y = utils.prepare_z_y(G_batch_size, G.dim_z,
config['n_classes'], device=device,
fp16=config['G_fp16'])
fixed_z.sample_()
fixed_y.sample_()
# Loaders are loaded, prepare the training function
if config['which_train_fn'] == 'GAN':
train = train_fns.GAN_training_function(G, D, GD, z_, y_,
ema, state_dict, config)
# Else, assume debugging and use the dummy train fn
else:
train = train_fns.dummy_training_function()
# Prepare Sample function for use with inception metrics
sample = functools.partial(utils.sample,
G=(G_ema if config['ema'] and config['use_ema']
else G),
z_=z_, y_=y_, config=config)
print('Beginning training at epoch %d...' % state_dict['epoch'])
# Train for specified number of epochs, although we mostly track G iterations.
for epoch in range(state_dict['epoch'], config['num_epochs']):
# Which progressbar to use? TQDM or my own?
if config['pbar'] == 'mine':
pbar = utils.progress(loaders[0], displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta')
else:
pbar = tqdm(loaders[0])
for i, (x, y) in enumerate(pbar):
# Increment the iteration counter
state_dict['itr'] += 1
# Make sure G and D are in training mode, just in case they got set to eval
# For D, which typically doesn't have BN, this shouldn't matter much.
G.train()
D.train()
if config['ema']:
G_ema.train()
if config['D_fp16']:
x, y = x.to(device).half(), y.to(device)
else:
x, y = x.to(device), y.to(device)
metrics = train(x, y, stage=config['stage'])
train_log.log(itr=int(state_dict['itr']), **metrics)
# Every sv_log_interval, log singular values
if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])):
train_log.log(itr=int(state_dict['itr']),
**{**utils.get_SVs(G, 'G'), **utils.get_SVs(D, 'D')})
# If using my progbar, print metrics.
if config['pbar'] == 'mine':
print(', '.join(['itr: %d' % state_dict['itr']]
+ ['%s : %+4.3f' % (key, metrics[key])
for key in metrics]), end=' ')
# Save weights and copies as configured at specified interval
if not (state_dict['itr'] % config['save_every']):
if config['G_eval_mode']:
print('Switchin G to eval mode...')
G.eval()
if config['ema']:
G_ema.eval()
train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y,
state_dict, config, experiment_name)
# Test every specified interval
if not (state_dict['itr'] % config['test_every']):
if config['G_eval_mode']:
print('Switchin G to eval mode...')
G.eval()
train_fns.test(G, D, G_ema, z_, y_, state_dict, config, sample,
get_inception_metrics, experiment_name, test_log)
state_dict['epoch'] += 1
def main():
# parse command line and run
parser = utils.prepare_parser()
config = vars(parser.parse_args())
print(config)
run(config)
if __name__ == '__main__':
main()