This repository has been archived by the owner on Nov 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 335
/
Copy pathmain.py
228 lines (188 loc) · 7.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
from io import BytesIO
from PyPDF2 import PdfReader
import pandas as pd
from openai.embeddings_utils import get_embedding, cosine_similarity
import openai
import os
import requests
import redis
from _md5 import md5
app = FastAPI()
origins = [
"http://localhost",
"http://localhost:3000",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
templates = Jinja2Templates(directory="templates")
app.mount("/static", StaticFiles(directory="static"), name="static")
db = redis.StrictRedis(host='localhost', port=6379, db=0)
class Chatbot():
def extraxt_txt(self, txt):
with open(txt, "r") as f:
text = f.read()
return str(text)
def extract_pdf(self, pdf):
print("Parsing paper")
number_of_pages = len(pdf.pages)
print(f"Total number of pages: {number_of_pages}")
paper_text = []
for i in range(number_of_pages):
page = pdf.pages[i]
page_text = []
def visitor_body(text, cm, tm, fontDict, fontSize):
x = tm[4]
y = tm[5]
# ignore header/footer
if (y > 50 and y < 720) and (len(text.strip()) > 1):
page_text.append({"fontsize": fontSize, "text": text.strip().replace("\x03", ""), "x": x, "y": y})
_ = page.extract_text(visitor_text=visitor_body)
blob_font_size = None
blob_text = ""
processed_text = []
for t in page_text:
if t["fontsize"] == blob_font_size:
blob_text += f" {t['text']}"
if len(blob_text) >= 200:
processed_text.append({"fontsize": blob_font_size, "text": blob_text, "page": i})
blob_font_size = None
blob_text = ""
else:
if blob_font_size is not None and len(blob_text) >= 1:
processed_text.append({"fontsize": blob_font_size, "text": blob_text, "page": i})
blob_font_size = t["fontsize"]
blob_text = t["text"]
paper_text += processed_text
print("Done parsing paper")
return paper_text
def create_df(self, data):
if type(data) == list:
print("Extracting text from pdf")
print("Creating dataframe")
filtered_pdf = []
# print(pdf.pages[0].extract_text())
for row in data:
if len(row["text"]) < 30:
continue
filtered_pdf.append(row)
df = pd.DataFrame(filtered_pdf)
# remove elements with identical df[text] and df[page] values
df = df.drop_duplicates(subset=["text", "page"], keep="first")
# df['length'] = df['text'].apply(lambda x: len(x))
print("Done creating dataframe")
elif type(data) == str:
print("Extracting text from txt")
print("Creating dataframe")
# Parse the text and add each paragraph to a column 'text' in a dataframe
df = pd.DataFrame(data.split("\n"), columns=["text"])
return df
def embeddings(self, df):
print("Calculating embeddings")
# openai.api_key = os.getenv('OPENAI_API_KEY')
embedding_model = "text-embedding-ada-002"
embeddings = df.text.apply([lambda x: get_embedding(x, engine=embedding_model)])
df["embeddings"] = embeddings
print("Done calculating embeddings")
return df
def search(self, df, query, n=3, pprint=True):
query_embedding = get_embedding(query, engine="text-embedding-ada-002")
df["similarity"] = df.embeddings.apply(lambda x: cosine_similarity(x, query_embedding))
results = df.sort_values("similarity", ascending=False, ignore_index=True)
# make a dictionary of the the first three results with the page number as the key and the text as the value. The page number is a column in the dataframe.
results = results.head(n)
sources = []
for i in range(n):
# append the page number and the text as a dict to the sources list
sources.append({"Page " + str(results.iloc[i]["page"]): results.iloc[i]["text"][:150] + "..."})
return {"results": results, "sources": sources}
def create_prompt(self, df, user_input):
print('Creating prompt')
print(user_input)
result = self.search(df, user_input, n=3)
data = result['results']
sources = result['sources']
system_role = """You are a AI assistant whose expertise is reading and summarizing scientific papers. You are given a query,
a series of text embeddings and the title from a paper in order of their cosine similarity to the query.
You must take the given embeddings and return a very detailed summary of the paper in the languange of the query:
"""
user_input = user_input + """
Here are the embeddings:
1.""" + str(data.iloc[0]['text']) + """
2.""" + str(data.iloc[1]['text']) + """
3.""" + str(data.iloc[2]['text']) + """
"""
history = [
{"role": "system", "content": system_role},
{"role": "user", "content": str(user_input)}]
print('Done creating prompt')
return {'messages': history, 'sources': sources}
def gpt(self, context, source):
print('Sending request to OpenAI')
openai.api_key = os.getenv('OPENAI_API_KEY')
r = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=context)
answer = r.choices[0]["message"]["content"]
print('Done sending request to OpenAI')
response = {'answer': answer, 'sources': source}
return response
@app.get("/", response_class=HTMLResponse)
async def index(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/process_pdf")
async def process_pdf(request: Request):
print("Processing pdf")
body = await request.body()
key = md5(body).hexdigest()
print(key)
if db.get(key) is not None:
print("Already processed pdf")
return JSONResponse({"key": key})
file = body
pdf = PdfReader(BytesIO(file))
chatbot = Chatbot()
paper_text = chatbot.extract_pdf(pdf)
df = chatbot.create_df(paper_text)
df = chatbot.embeddings(df)
if db.get(key) is None:
db.set(key, df.to_json())
print("Done processing pdf")
return JSONResponse({"key": key})
@app.post("/download_pdf")
async def download_pdf(url: str):
chatbot = Chatbot()
r = requests.get(str(url))
key = md5(r.content).hexdigest()
if db.get(key) is not None:
return JSONResponse({"key": key})
pdf = PdfReader(BytesIO(r.content))
paper_text = chatbot.extract_pdf(pdf)
df = chatbot.create_df(paper_text)
df = chatbot.embeddings(df)
if db.get(key) is None:
db.set(key, df.to_json())
print("Done processing pdf")
return JSONResponse({"key": key})
@app.post("/reply")
async def reply(request: Request):
data = await request.json()
key = data.get('key')
query = data.get('query')
chatbot = Chatbot()
query = str(query)
df = pd.read_json(BytesIO(db.get(key)))
print(df.head(5))
prompt = chatbot.create_prompt(df, query)
chat = []
chat.extend(prompt['messages'])
response = chatbot.gpt(chat, prompt['sources'])
print(response)
return JSONResponse(content=response, status_code=200)