-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGroup2-Code.py
executable file
·277 lines (231 loc) · 10.2 KB
/
Group2-Code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# -*- coding: utf-8 -*-
"""
Created on Thu May 16 10:48:06 2019
@author: user
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import os
import sys
import tensorflow as tf
import regex as re
import math
import model_utils
from batch_generator import BatchGenerator
import configs as configs
#%%
def get_configs():
configs.DEFINE_string("name",'trial1',"")
configs.DEFINE_string("datafile", 'Group2-Dataset.csv', "")
configs.DEFINE_string("predict_datafile", None, "")
configs.DEFINE_string("mse_outfile", None, "")
configs.DEFINE_string("scalesfile", None, "")
configs.DEFINE_string("default_gpu", '/gpu:0', "")
configs.DEFINE_string("nn_type",'DeepRnnModel',"")
configs.DEFINE_string("active_field", 'active', "")
configs.DEFINE_string("date_field", 'date', "")
configs.DEFINE_string("key_field", 'gvkey',"")
configs.DEFINE_string("target_field", 'mkvaltq_ttm',"")
configs.DEFINE_string("scale_field", 'mrkcap',"")
configs.DEFINE_string("financial_fields", 'saleq_ttm-ltq_mrq',"")
configs.DEFINE_string("aux_fields", 'mom3m-mom9m', "")
configs.DEFINE_string("dont_scale", None,"")
configs.DEFINE_string("data_dir",'datasets',"")
configs.DEFINE_string("model_dir",'chkpts-wrds-rnn',"")
configs.DEFINE_string("rnn_cell",'lstm',"")
configs.DEFINE_string("activation_fn",'relu',"")
configs.DEFINE_integer("num_inputs", -1,"")
configs.DEFINE_integer("num_outputs", -1,"")
configs.DEFINE_integer("target_idx",None,"")
configs.DEFINE_integer("min_unrollings",5,"")
configs.DEFINE_integer("max_unrollings",5,"")
configs.DEFINE_integer("min_years",None,"")
configs.DEFINE_integer("max_years",None,"")
configs.DEFINE_integer("pls_years",None,"")
configs.DEFINE_integer("num_unrollings",5,"")
configs.DEFINE_integer("stride",12,"")
configs.DEFINE_integer("forecast_n",3,"")
configs.DEFINE_integer("batch_size",128,"")
configs.DEFINE_integer("num_layers",5, "")
configs.DEFINE_integer("num_hidden",128,"")
configs.DEFINE_float("training_noise",None, "")
configs.DEFINE_float("init_scale",0.01, "")
configs.DEFINE_float("max_grad_norm",10.0,"")
configs.DEFINE_integer("start_date",None,"")
configs.DEFINE_integer("end_date",None,"")
configs.DEFINE_integer("split_date",None,"")
configs.DEFINE_float("keep_prob",0.75,"")
configs.DEFINE_boolean("train",False,"")
configs.DEFINE_boolean("require_targets",False,"")
configs.DEFINE_boolean("input_dropout",False,"")
configs.DEFINE_boolean("hidden_dropout",False,"")
configs.DEFINE_boolean("rnn_dropout",True,"")
configs.DEFINE_boolean("skip_connections",False,"")
configs.DEFINE_boolean("direct_connections",False,"")
configs.DEFINE_boolean("use_cache",True,"")
configs.DEFINE_boolean("pretty_print_preds",True,"")
configs.DEFINE_boolean("scale_targets",True,"")
configs.DEFINE_boolean("backfill",False,"")
configs.DEFINE_boolean("log_squasher",True,"")
configs.DEFINE_boolean("ts_smoother",False,"")
configs.DEFINE_string("data_scaler",'RobustScaler','')
configs.DEFINE_string("optimizer", 'AdadeltaOptimizer', '')
configs.DEFINE_string("optimizer_params",None, '')
configs.DEFINE_float("learning_rate",0.6,"")
configs.DEFINE_float("lr_decay",0.95, "")
configs.DEFINE_float("validation_size",0.3,"")
configs.DEFINE_float("train_until",0.0,"")
configs.DEFINE_float("passes",0.2,"")
configs.DEFINE_float("target_lambda",0.8,"")
configs.DEFINE_float("rnn_lambda",0.2,"")
configs.DEFINE_float("l2_alpha",0.0,"")
configs.DEFINE_integer("max_epoch",1000,"")
configs.DEFINE_integer("early_stop",10,"")
configs.DEFINE_integer("seed",100,"")
configs.DEFINE_integer("cache_id",100,"")
configs.DEFINE_string("output_file", "mkvaltq_2016.csv", "")
c = configs.ConfigValues()
if c.min_unrollings is None:
c.min_unrollings = c.num_unrollings
if c.max_unrollings is None:
c.max_unrollings = c.num_unrollings
if c.min_years is not None:
c.min_unrollings = c.min_years * ( 12 // c.stride )
if c.max_years is not None:
c.max_unrollings = (c.max_years) * ( 12 // c.stride )
elif c.pls_years is None:
c.max_unrollings = c.min_unrollings
else:
c.max_unrollings = (c.min_years+c.pls_years) * ( 12 // c.stride )
# optimizer_params is a string of the form "param1=value1,param2=value2,..."
# this maps it to dictionary { param1 : value1, param2 : value2, ...}
if c.optimizer_params is None:
c.optimizer_params = dict()
else:
args_list = [p.split('=') for p in c.optimizer_params.split(',')]
params = dict()
for p in args_list:
params[p[0]] = float(p[1])
c.optimizer_params = params
assert('learning_rate' not in c.optimizer_params)
return c
#%%
def pretty_progress(step, prog_int, dot_count):
if ( (prog_int<=1) or (step % (int(prog_int)+1)) == 0):
dot_count += 1; print('.',end=''); sys.stdout.flush()
return dot_count
def run_epoch(session, model, train_data, valid_data,
keep_prob=1.0, passes=1.0,
noise_model=None, verbose=False):
if not train_data.num_batches > 0:
raise RuntimeError("batch_size*max_unrollings is larger "
"than the training set size.")
start_time = time.time()
train_mse = valid_mse = 0.0
dot_count = 0
train_steps = int(passes*train_data.num_batches)
valid_steps = valid_data.num_batches
total_steps = train_steps+valid_steps
prog_int = total_steps/100
train_data.shuffle()
valid_data.rewind()
print("Steps: %d "%total_steps,end=' ')
for step in range(train_steps):
batch = train_data.next_batch()
train_mse += model.train_step(session, batch, keep_prob=keep_prob)
if verbose: dot_count = pretty_progress(step,prog_int,dot_count)
# evaluate validation data
for step in range(valid_steps):
batch = valid_data.next_batch()
(mse,_) = model.step(session, batch)
valid_mse += mse
if verbose: dot_count = pretty_progress(train_steps+step,prog_int,dot_count)
if verbose:
print("."*(100-dot_count),end='')
print(" passes: %.2f "
"speed: %.0f seconds" % (passes,(time.time() - start_time)) )
sys.stdout.flush()
return (train_mse/train_steps,valid_mse/valid_steps)
def stop_training(config, perfs):
"""
Early stop algorithm
Args:
config:
perfs: History of validation performance on each iteration
file_prefix: how to name the chkpnt file
"""
window_size = config.early_stop
if ( (window_size is not None)
and (len(perfs) > window_size)
and (min(perfs) < min(perfs[-window_size:])) ):
return True
elif config.train_until > perfs[-1]:
return True
else:
return False
def train_model(config):
if config.start_date is not None:
print("Training start date: ", config.start_date)
if config.start_date is not None:
print("Training end date: ", config.end_date)
print("Loading training data from %s ..."%config.datafile)
train_data = None
valid_data = None
data_path = os.path.join(config.data_dir, config.datafile)
batches = BatchGenerator(data_path, config, is_training_only=True)
train_data = batches.train_batches(verbose=True)
valid_data = batches.valid_batches(verbose=True)
tf_config = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)
with tf.Graph().as_default(), tf.Session(config=tf_config) as session:
if config.seed is not None:
tf.set_random_seed(config.seed)
print("Constructing model ...")
model = model_utils.get_model(session, config, verbose=True)
params = model_utils.get_scaling_params(config,train_data,verbose=True)
model.set_scaling_params(session,**params)
noise_model = None
if config.early_stop is not None:
print("Training will early stop without "
"improvement after %d epochs."%config.early_stop)
sys.stdout.flush()
train_history = list()
valid_history = list()
lr = model.set_learning_rate(session,config.learning_rate)
train_data.cache(verbose=True)
valid_data.cache(verbose=True)
for i in range(config.max_epoch):
(train_mse, valid_mse) = run_epoch(session, model, train_data, valid_data,
keep_prob=config.keep_prob,
passes=config.passes,
noise_model=noise_model,
verbose=True)
print( ('Epoch: %d Train MSE: %.6f Valid MSE: %.6f Learning rate: %.4f') %
(i + 1, train_mse, valid_mse, lr) )
sys.stdout.flush()
train_history.append( train_mse )
valid_history.append( valid_mse )
if re.match("Gradient|Momentum",config.optimizer):
lr = model_utils.adjust_learning_rate(session, model,
lr, config.lr_decay, train_history )
if not os.path.exists(config.model_dir):
print("Creating directory %s" % config.model_dir)
os.mkdir(config.model_dir)
if math.isnan(valid_mse):
print("Training failed due to nan.")
quit()
elif stop_training(config,valid_history):
print("Training stopped.")
quit()
else:
if ( (config.early_stop is None) or
(valid_history[-1] <= min(valid_history)) ):
model_utils.save_model(session,config,i)
#%%
def main(_):
config = get_configs()
train_model(config)
if __name__ == "__main__":
tf.app.run()