forked from naver/bergen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprint_results.py
154 lines (124 loc) · 6.92 KB
/
print_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import json
from pathlib import Path
from omegaconf import OmegaConf
import os
import pandas as pd
def get_info(file):
res= json.load( open(file))
nbres=len(res)
llen=[]
nbsub=0
for ex in res:
llen.append(len(ex['Pred'].split(' ')))
if ex['SUBSTR']:nbsub+=1
return nbres,nbsub/nbres,sum(llen)/nbres
def get_em_score(file):
res= json.load( open(file))
return res['em']
def get_bem_score(file):
with open(file) as fd:
return float(fd.readline().strip())
def get_config(file, split):
config = OmegaConf.load(file)
dataset_doc = config['dataset'][split]['doc']['init_args']['_target_'].replace('modules.dataset_processor.', '')
dataset_query = config['dataset'][split]['query']['init_args']['_target_'].replace('modules.dataset_processor.', '')
retriever = config['retriever']['init_args']['model_name'] if 'retriever' in config and 'init_args' in config['retriever'] else None
reranker = config['reranker']['init_args']['model_name'] if 'reranker' in config and 'init_args' in config['reranker'] else None
generator = config['generator']['init_args']['model_name'] if 'generator' in config and 'init_args' in config['generator'] else None
prompt = config['prompt'] if 'prompt' in config else ''
retrieve_top_k = config['retrieve_top_k'] if 'retriever' in config else '-'
rerank_top_k = config['rerank_top_k'] if 'reranker' in config else '-'
return dataset_query, dataset_doc, retriever, reranker, generator, prompt, retrieve_top_k, rerank_top_k
def get_scores(file, decimals=2):
data = json.load(open(file))
bem = float(data['BEM']) if 'BEM' in data else None
ll7b = float(data['LLM_ll7b']) if 'LLM_ll7b' in data else None
ll13b = float(data['LLM_ll13b']) if 'LLM_ll13b' in data else None
ll70b = float(data['LLM_ll70b']) if 'LLM_ll70bsol' in data else None
mix7b = float(data['LLM_mix7b']) if 'LLM_mix7b' in data else None
LLMeval = float(data['LLMeval']) if 'LLMeval' in data else None
m = float(data['M'])
em = float(data['EM'])
f1 = float(data['F1'])
precision = float(data['Precision'])
recall = float(data['Recall'])
rouge1 = float(data['Rouge-1'])
rouge2 = float(data['Rouge-2'])
rougel = float(data['Rouge-L'])
return m, em, f1, precision, recall, rouge1, rouge2, rougel, bem, LLMeval #ll7b,ll13b,ll70b, mix7b
def get_generation_time(file):
data = json.load(open(file))
return data['Generation time']
def get_ranking_metrics(file):
data = json.load(open(file))
return data['P_1']
def main(args):
folder_path = Path(args.folder)
ltuple=[]
split = args.split
for current_folder in folder_path.iterdir():
skip = False
try:
if current_folder.is_dir() and not 'tmp_' in str(current_folder):
gen_time = None
ranking_metric = None
files = [f.name for f in current_folder.iterdir()]
if f'eval_{split}_metrics.json' in files:
for file_in_subfolder in current_folder.iterdir():
# try:
if 'config.yaml' in str(file_in_subfolder):
dataset_query, dataset_doc, retriever, reranker, generator, prompt, retrieve_top_k, rerank_top_k = get_config(file_in_subfolder, split)
if f'eval_{split}_metrics.json' in str(file_in_subfolder):
m, em, f1, precision, recall, rouge1, rouge2, rougel, bem, LLMeval= get_scores(file_in_subfolder)
if f'eval_{split}_generation_time.json' in str(file_in_subfolder) :
gen_time = get_generation_time(file_in_subfolder)
if f'eval_{split}_ranking_metrics.json' in str(file_in_subfolder) :
ranking_metric = get_ranking_metrics(file_in_subfolder)
# except:
# print(f'Failed to load {current_folder}!')
#preprocess the generator name,retriever,reranker name
generator_basename = os.path.basename(generator)
retriever_basename = os.path.basename(retriever)
reranker_basename = os.path.basename(reranker)
if args.format =='simple':
ltuple.append([current_folder.name, dataset_query, generator_basename,retriever_basename, reranker_basename, m, em, recall, rougel, bem, LLMeval])
elif args.format =='tiny':
ltuple.append([current_folder.name, dataset_query, generator_basename,retriever_basename, reranker_basename, m, LLMeval])
elif args.format=='full':
ltuple.append([current_folder.name, retriever, ranking_metric, reranker, generator, gen_time, dataset_query, retrieve_top_k, rerank_top_k, m, em, f1, precision, recall, rouge1, rouge2, rougel, bem, LLMeval])
else:
raise ValueError('Invalid output format')
except:
print(f'Skipping {current_folder} due to parsing errors!')
if len(ltuple) == 0:
print(f'No results in folder "{args.folder}" yet!')
exit()
df= pd.DataFrame(ltuple)
if args.format =='simple':
# ltuple.append([current_folder.name, dataset_query, generator,retriever, reranker, m, em, recall, rougel, bem, LLMeval])
df.columns = ['exp_folder', 'query_dataset', 'Generator', 'Retriever', 'Reranker', "M", "EM", "R", "Rg-L", "BEM", "LLMeval"]
elif args.format =='tiny':
#ltuple.append([current_folder.name, dataset_query, generator,retriever, reranker, m, LLMeval])
df.columns = ['exp_folder', 'query_dataset', 'Generator', 'Retriever', 'Reranker', "M", "LLMeval"]
elif args.format =='full':
df.columns = ['exp_folder', 'Retriever', 'P_1', 'Reranker', 'Generator', 'gen_time', 'query_dataset', "r_top", "rr_top", "M", "EM", "F1", "P", "R", "Rg-1", "Rg-2", "Rg-L", "BEM", "LLMeval"]
else:
raise ValueError('Invalid output format')
df=df.sort_values(by=[args.sort])
print('Split:', args.split)
print(df.to_markdown(floatfmt=".2f"))
if args.csv:
os.makedirs('results', exist_ok=True)
file_name = args.folder.replace('/', '_')
df.to_csv(f'results/{file_name}.csv', index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--folder", type=str, default='experiments')
parser.add_argument("--split", type=str, default='dev')
parser.add_argument("--format", type=str, default='simple',choices=['simple', 'tiny', 'full'],
help='tiny prints Match and LLMEval; simple adds EM, R, Rg-L, BEM ; full prints all metrics and data')
parser.add_argument("--sort", type=str, default="Generator")
parser.add_argument("--csv", action='store_true')
args = parser.parse_args()
main(args)