-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink_prediction_hypergraph.py
77 lines (34 loc) · 1.01 KB
/
link_prediction_hypergraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# coding: utf-8
# In[ ]:
# coding: utf-8
# # parse arguments ([ConfigArgParse](https://github.com/bw2/ConfigArgParse))
# In[ ]:
from config import config
args = config.parse()
# # load dataset (hyperlinks and candidates)
# In[ ]:
from data import data
dataset = data.load(args)
# # get the graph (dual), features, and labels
# In[ ]:
dataset = data.preProcess(dataset, args)
# dataset is a dictionary with graph, hyperlinks, etc. as keys
# # get train and test data
# In[ ]:
from data import split
trainData, testData = split.TrainTest(dataset, args)
# # gpu
# In[ ]:
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# # initialise NHP
# In[ ]:
from model import model
nhp, dataset, trainData, testData = model.initialiseNormalise(dataset, trainData, testData, args)
# # train and test NHP
# In[ ]:
nhp = model.train(nhp, dataset, trainData, args)
results = model.test(nhp, dataset, testData, args)
# In[ ]:
print(results)