-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnoisy_aa_online.py
188 lines (137 loc) · 7.94 KB
/
noisy_aa_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import Unit
import math
import torch
from torch import nn
import torchvision
import numpy as np
import pickle
import utilities
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
from torch.utils.data import Subset
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
softmax = nn.Softmax(dim=1)
NLL = nn.NLLLoss(reduction='sum')
mse = torch.nn.MSELoss(reduction='sum')
bce = torch.nn.BCELoss(reduction='sum')
cos = torch.nn.CosineSimilarity(dim=0)
relu = nn.ReLU()
def get_train_loader(train_set, num_cls=10, shuf=True, iter_cls=50, cont=False, cls_inc=False):
if cont and cls_inc:
sorted_data = []
for c in range(num_cls):
labels = train_set.targets
idx = (torch.tensor(labels)==c).nonzero().view(-1)
if shuf:
idx = idx.view(-1)[torch.randperm(idx.size(0))]
for d in range(iter_cls):
sorted_data.append(train_set[idx[d]])
return torch.utils.data.DataLoader(sorted_data, batch_size=1, shuffle=False)
else:
return torch.utils.data.DataLoader(train_set, batch_size=1, shuffle=shuf)
#Reduces data to specified number of examples per category
def get_data(shuf=False, data=2, cont=False, max_iter=50000, iter_cls=50):
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
if data == 0:
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=False, transform=transform)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=False, transform=transform)
num_cls = 10
elif data == 1:
trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=False, transform=transform)
testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=False, transform=transform)
num_cls = 10
elif data == 2:
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
num_cls = 10
elif data == 3:
trainset = torchvision.datasets.SVHN(root='./data', split='train', download=False, transform=transform)
num_cls = 10
elif data == 4:
trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=False, transform=transform)
testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=False, transform=transform)
num_cls = 100
elif data == 5:
dir = 'C:/Users/nalon/Documents/PythonScripts/tiny-imagenet-200/train'
trainset = torchvision.datasets.ImageFolder(dir, transform=transform)
dir = 'C:/Users/nalon/Documents/PythonScripts/tiny-imagenet-200/test'
testset = torchvision.datasets.ImageFolder(dir, transform=transform)
num_cls = 200
elif data == 6:
trainset = torchvision.datasets.EMNIST(root='./data', train=True, download=True, transform=transform, split='byclass')
testset = torchvision.datasets.EMNIST(root='./data', train=False, download=True, transform=transform, split='byclass')
num_cls = 62
train_loader = get_train_loader(trainset, num_cls=num_cls, shuf=shuf, iter_cls=iter_cls, cont=cont)
test_loader = torch.utils.data.DataLoader(testset, batch_size=10000, shuffle=False)
return train_loader, test_loader
############################################# Online I.I.D. ######################################################
def train_online(in_sz, hid_sz, simf, data, dev='cuda', max_iter=200, wtupType=1, num_seeds=10, alpha=10, lr=.2,
t_fq=100, shuf=True, det_type=0, ns_type=0, num_up=5, plus=False):
with torch.no_grad():
recall_mse = torch.zeros(num_seeds, int(max_iter / t_fq)+1)
recall_pcnt = torch.zeros(num_seeds, int(max_iter / t_fq)+1)
recall_mse_n = torch.zeros(num_seeds, int(max_iter / t_fq)+1)
recall_pcnt_n = torch.zeros(num_seeds, int(max_iter / t_fq)+1)
# Memorize
for s in range(num_seeds):
model = Unit.MemUnit(layer_szs=[in_sz, hid_sz], simFunc=simf, wt_up=wtupType, alpha=alpha, lr=lr, det_type=det_type).to(dev)
train_loader, test_loader = get_data(shuf=shuf, data=data, max_iter=max_iter, cont=False)
for batch_idx, (images, y) in enumerate(train_loader):
if batch_idx == 0:
mem_images = torch.zeros(0, images.size(1), images.size(2), images.size(3)).to(dev)
images = images.to(dev) * .96 + .02
mem_images = torch.cat((mem_images, images), dim=0)
images = images.view(1, -1)
for n in range(num_up):
if ns_type == 0:
imgn_new = torch.clamp(images + torch.randn_like(images) * .2, min=0, max=1)
else:
imgn_new = torch.bernoulli(images)
if n > 0:
imgn = imgn * .5 + imgn_new * .5
else:
imgn = imgn_new
#If first iteration or not doing IPHN+ then update activities
if n ==0 or not plus:
act = model.infer_step(imgn)
z = F.one_hot(torch.argmax(act, dim=1), num_classes=model.layer_szs[1]).float().to(dev)
model.update_wts(act, z, imgn)
#Reset activities after weight updates, if doing IPHN+
if n == 0 and plus:
act = model.infer_step(imgn)
if batch_idx % t_fq == 0:
mse, pct, msen, pctn = corrupt_test(.2, ns_type, model, mem_images)
recall_mse[s, int(batch_idx / t_fq)] = mse
recall_pcnt[s, int(batch_idx / t_fq)] = pct
recall_mse_n[s, int(batch_idx / t_fq)] = msen
recall_pcnt_n[s, int(batch_idx / t_fq)] = pctn
'''print(batch_idx, f'Seed:{s} ', f'None:{round(mse, 4), round(pct, 4)} ',
f'Noise:{round(msen, 4), round(pctn, 4)} ')'''
if batch_idx == max_iter:
break
print(f'Plus:{plus} Wt Update {wtupType} DetType:{det_type} PropRcl:{torch.mean(recall_pcnt[:, -1])} '
f'MSE:{torch.mean(recall_mse[:, -1])} '
f'MSE(Noise):{torch.mean(recall_mse_n[:, -1])}')
with open(f'data/AA_NoisyOnline_numN{hid_sz}_data{data}_numData{max_iter}_NUp{num_up}_NsType{ns_type}_plus{plus}.data', 'wb') as filehandle:
pickle.dump([recall_mse, recall_pcnt, recall_mse_n, recall_pcnt_n], filehandle)
###############################################################################################################################
def corrupt_test(noise, noise_tp, mem_unit, mem_images, rec_thr=.01):
with torch.no_grad():
img = mem_images.clone()
if noise_tp == 0:
imgn = torch.clamp(img + torch.randn_like(img) * noise, min=0, max=1).view(img.size(0), -1)
else:
imgn = torch.bernoulli(img)
#None
p = mem_unit.recall(img)
mse = torch.mean(torch.square(img.view(img.size(0), -1) - p)).item()
recalled = ((torch.mean(torch.square(img.view(img.size(0), -1) - p.view(p.size(0), -1)),
dim=1) <= rec_thr).sum() / img.size(0)).item()
#Noise
p = mem_unit.recall(imgn)
mse_n = torch.mean(torch.square(img.view(img.size(0), -1) - p)).item()
recalled_n = ((torch.mean(torch.square(img.view(img.size(0), -1) - p.view(p.size(0), -1)), dim=1) <= rec_thr).sum() / img.size(0)).item()
return mse, recalled, mse_n, recalled_n