diff --git a/PTMCMCSampler/PTMCMCSampler.py b/PTMCMCSampler/PTMCMCSampler.py index e001bc9..8063ddc 100755 --- a/PTMCMCSampler/PTMCMCSampler.py +++ b/PTMCMCSampler/PTMCMCSampler.py @@ -15,10 +15,12 @@ try: import acor except ImportError: - print( - "Optional acor package is not installed. Acor is optionally used to calculate the " - "effective chain length for output in the chain file." - ) + # Don't complain if not available. If you set neff, you'll get an error. Otherwise + # it doesn't matter. + # print( + # "Optional acor package is not installed. Acor is optionally used to calculate the " + # "effective chain length for output in the chain file." + # ) pass @@ -173,7 +175,7 @@ def initialize( maxIter=None, thin=10, i0=0, - neff=100000, + neff=None, writeHotChains=False, hotChain=False, ): @@ -391,7 +393,7 @@ def sample( maxIter=None, thin=10, i0=0, - neff=100000, + neff=None, writeHotChains=False, hotChain=False, ): @@ -494,33 +496,29 @@ def sample( iter = i0 runComplete = False - Neff = 0 while runComplete is False: iter += 1 self.comm.barrier() # make sure all processes are at the same iteration # call PTMCMCOneStep p0, lnlike0, lnprob0 = self.PTMCMCOneStep(p0, lnlike0, lnprob0, iter) - # compute effective number of samples in cold chain - if iter % 1000 == 0 and iter > 2 * self.burn and self.MPIrank == 0: - try: - Neff = iter / max( - 1, - np.nanmax([acor.acor(self._chain[self.burn : (iter - 1), ii])[0] for ii in range(self.ndim)]), - ) - # print('\n {0} effective samples'.format(Neff)) - except NameError: - Neff = 0 - pass - # rank 0 decides whether to stop if self.MPIrank == 0: if iter >= self.Niter: # stop if reached maximum number of iterations message = "\nRun Complete" runComplete = True - elif int(Neff) > self.neff: # stop if reached maximum number of iterations - message = "\nRun Complete with {0} effective samples".format(int(Neff)) - runComplete = True + elif self.neff: # Stop if effective number of samples reached if requested + if iter % 1000 == 0 and iter > 2 * self.burn and self.MPIrank == 0: + Neff = iter / max( + 1, + np.nanmax( + [acor.acor(self._chain[self.burn : (iter - 1), ii])[0] for ii in range(self.ndim)] + ), + ) + # print('\n {0} effective samples'.format(Neff)) + if int(Neff) >= self.neff: + message = "\nRun Complete with {0} effective samples".format(int(Neff)) + runComplete = True runComplete = self.comm.bcast(runComplete, root=0) # rank 0 tells others whether to stop