diff --git a/navis/core/mesh.py b/navis/core/mesh.py index 233076e0..0ba86485 100644 --- a/navis/core/mesh.py +++ b/navis/core/mesh.py @@ -98,7 +98,7 @@ class MeshNeuron(BaseNeuron): TEMP_ATTR = ['_memory_usage', '_trimesh', '_skeleton', '_igraph', '_graph_nx'] #: Core data table(s) used to calculate hash - CORE_DATA = ['vertices', 'faces'] + CORE_DATA = ['vertices', 'faces', 'edges'] def __init__(self, x, @@ -114,18 +114,29 @@ def __init__(self, self._lock = 1 self._trimesh = None # this is required to avoid recursion during init + if isinstance(x, MeshNeuron): self.__dict__.update(x.copy().__dict__) + self.vertices, self.faces, self.edges = x.vertices, x.faces, x.edges + elif hasattr(x, "faces") and hasattr(x, "vertices"): self.vertices, self.faces = x.vertices, x.faces - elif hasattr(x, 'faces') and hasattr(x, 'vertices'): - self.vertices, self.faces = x.vertices, x.faces + if hasattr(x, "edges"): + self.edges = x.edges + else: + self.edges = np.array([[]]) elif isinstance(x, dict): - if 'faces' not in x or 'vertices' not in x: + if "faces" not in x or "vertices" not in x: raise ValueError('Dictionary must contain "vertices" and "faces"') - self.vertices, self.faces = x['vertices'], x['faces'] + self.vertices, self.faces = x["vertices"], x["faces"] + if "edges" in x: + self.edges = x["edges"] + else: + self.edges = np.array([[]], int) + elif isinstance(x, str) and os.path.isfile(x): m = tm.load(x) self.vertices, self.faces = m.vertices, m.faces + self.edges = np.array([[]], int) elif isinstance(x, type(None)): # Empty neuron self.vertices, self.faces = np.zeros((0, 3)), np.zeros((0, 3)) @@ -282,6 +293,20 @@ def vertices(self, verts): raise ValueError('Vertices must be 2-dimensional array') self._vertices = verts self._clear_temp_attr() + + @property + def edges(self): + """Edges making up the neuron.""" + return self._edges + + @edges.setter + def edges(self, edges): + if not isinstance(edges, np.ndarray): + raise TypeError(f'Edges must be numpy array, got "{type(edges)}"') + if edges.ndim != 2: + raise ValueError("Edges must be 2-dimensional array") + self._edges = edges + self._clear_temp_attr() @property def faces(self): diff --git a/navis/graph/converters.py b/navis/graph/converters.py index aa0f7edd..7a6daa52 100644 --- a/navis/graph/converters.py +++ b/navis/graph/converters.py @@ -300,6 +300,15 @@ def neuron2nx(x: "core.NeuronObject", simplify=False, epsilon=None) -> nx.DiGrap for e, l in zip(x.trimesh.edges_unique, x.trimesh.edges_unique_length) ] G.add_weighted_edges_from(edges) + extra_edge_lengths = np.linalg.norm( + x.vertices[x.edges[:, 0], :] - x.vertices[x.edges[:, 1], :], axis=1 + ) + extra_edges = [ + (x.edges[i, 0], x.edges[i, 1], extra_edge_lengths[i]) + for i in range(x.edges.shape[0]) + ] + G.add_weighted_edges_from(extra_edges) + elif isinstance(x, core.Dotprops): if epsilon is None: epsilon = 5 * x.sampling_resolution @@ -841,14 +850,13 @@ def edges2neuron(edges, vertices=None, validate=True, **kwargs): # (note that we assign -1 as root's parent) parents.update({k: v[0] if v else -1 for k, v in this.items()}) - nodes = pd.DataFrame(vertices, columns=['x', 'y', 'z']) - nodes.insert(0, 'node_id', nodes.index) - nodes.insert(1, 'parent_id', nodes.index.map(parents)) + nodes = pd.DataFrame(vertices, columns=["x", "y", "z"]) + nodes.insert(0, "node_id", nodes.index) + nodes.insert(1, "parent_id", nodes.index.map(parents)) return core.TreeNeuron(nodes, **kwargs) - def _find_all_paths( g: nx.DiGraph, start, end, mode: str = "OUT", maxlen: Optional[int] = None ) -> list: diff --git a/navis/interfaces/blender.py b/navis/interfaces/blender.py index b9c154dd..2eeee7d6 100644 --- a/navis/interfaces/blender.py +++ b/navis/interfaces/blender.py @@ -399,7 +399,7 @@ def _create_mesh(self, x, mat, collection=None): ob['id'] = str(x.id) blender_verts = verts.tolist() - me.from_pydata(list(blender_verts), [], list(x.faces)) + me.from_pydata(list(blender_verts), list(x.edges), list(x.faces)) me.update() me.polygons.foreach_set('use_smooth', [True] * len(me.polygons))