forked from AllenNeuralDynamics/poisson-numcodecs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalibrate.py
475 lines (364 loc) · 18.6 KB
/
calibrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import HuberRegressor as Regressor
class CalibratePhotons():
def __init__(self, data_array_movie):
# We first check we have a 3D movie
if len(data_array_movie.shape) != 3:
raise ValueError("The data array movie should be N x Y x X. where N is the number of frames and Y and X are the spatial dimensions.")
self.data_array_movie = data_array_movie
self.std_image = None
self.mean_image = None
self.photon_sensitivity = None
self.dark_signal = None
def get_mean_image(self):
"""Get the mean image of the data array movie."""
if self.mean_image is None:
self.mean_image = np.mean(self.data_array_movie, axis=0)
return self.mean_image
def get_std_image(self):
"""Get the standard deviation image of the data array movie."""
if self.std_image is None:
self.std_image = np.std(self.data_array_movie, axis=0)
return self.std_image
def plot_std_projection_image(self, min_range=1, max_range=99):
"""Plot the standard deviation projection image."""
fig = plt.figure()
image_project = self.get_std_image()
list_pixel_limits = np.percentile(image_project.flatten(), [min_range, max_range])
plt.imshow(image_project, cmap="gray", vmin=list_pixel_limits[0], vmax=list_pixel_limits[1], interpolation='none')
plt.colorbar()
plt.axis("off")
return fig
def plot_mean_projection_image(self, min_range=1, max_range=99):
"""Plot the mean projection image."""
fig = plt.figure()
image_project = self.get_mean_image()
list_pixel_limits = np.percentile(image_project.flatten(), [min_range, max_range])
plt.imshow(image_project, cmap="gray", vmin=list_pixel_limits[0], vmax=list_pixel_limits[1], interpolation='none')
plt.colorbar()
plt.axis("off")
return fig
def subsample_and_crop_video(self, crop, start_frame=0, end_frame=-1):
"""Subsample and crop a video, cache results. Also functions as a data_pointer load.
Args:
crop: A tuple (px_y, px_x) specifying the number of pixels to remove
start_frame: The index of the first desired frame
end_frame: The index of the last desired frame
Returns:
The resultant array.
"""
# We first reset the saved data
self.mean_image = None
self.std_image = None
self.photon_sensitivity = None
self.dark_signal = None
_shape = self.data_array_movie.shape
px_y_start, px_x_start = crop
px_y_end = _shape[1] - px_y_start
px_x_end = _shape[2] - px_x_start
if start_frame == _shape[0] - 1 and (end_frame == -1 or end_frame == _shape[0]):
cropped_video = self.data_array_movie[
start_frame:_shape[0], px_y_start:px_y_end, px_x_start:px_x_end
]
else:
cropped_video = self.data_array_movie[
start_frame:end_frame, px_y_start:px_y_end, px_x_start:px_x_end
]
self.data_array_movie = cropped_video
def get_photon_flux_movie(self):
"""Get the photon flux movie. This is the movie with the photon gain and offset applied."""
if self.photon_sensitivity is None:
raise ValueError("You need to compute the photon gain parameters first.")
else:
photon_flux = (self.data_array_movie
.astype('float') - self.dark_signal) / self.photon_sensitivity
return photon_flux
class SequentialCalibratePhotons(CalibratePhotons):
def __init__(self, data_array_movie):
# We call the parent class
super().__init__(data_array_movie)
# This is part of the sequential object data clean up.
self.data_array_movie = np.maximum(0, self.data_array_movie.astype(np.int32, copy=False))
self.photon_sensitivity = None
self.dark_signal = None
self.fitted_pixels = None
self.fitted_pixels_var = None
self.fitted_pixels_mean = None
self.fitted_model = None
def _longest_run(self, bool_array: np.ndarray) -> slice:
"""
Find the longest contiguous segment of True values inside bool_array.
Args:
bool_array: 1d boolean array.
Returns:
Slice with start and stop for the longest contiguous block of True values.
"""
step = np.diff(np.int8(bool_array), prepend=0, append=0)
on = np.where(step == 1)[0]
off = np.where(step == -1)[0]
i = np.argmax(off - on)
return slice(on[i], off[i])
def get_photon_sensitivity_parameters(self, count_weight_gamma: float=0.2) -> dict:
"""Calculate photon sensitivity
Args:
count_weight_gamma: 0.00001=weigh each intensity level equally,
1.0=weigh each intensity in proportion to pixel counts.
Returns:
A list with the photon gain and offset for each group of pixels.
"""
intensity = (self.data_array_movie[:-1, :, :] + self.data_array_movie[1:, :, :] + 1) // 2
difference = self.data_array_movie[:-1, :, :].astype(np.float32) - self.data_array_movie[1:, :, :]
select = intensity > 0
intensity = intensity[select]
difference = difference[select]
counts = np.bincount(intensity.flatten())
bins = self._longest_run(counts > 0.01 * counts.mean()) # consider only bins with at least 1% of mean counts
bins = slice(max(bins.stop * 3 // 100, bins.start), bins.stop)
assert (
bins.stop - bins.start > 100
), f"Bins.start: {bins.start}, Bins.stop: {bins.stop} The image does not have a sufficient range of intensities to compute the noise transfer function."
counts = counts[bins]
idx = (intensity >= bins.start) & (intensity < bins.stop)
variance = (
np.bincount(
intensity[idx] - bins.start,
weights=(difference[idx] ** 2) / 2,
)
/ counts
)
model = Regressor()
model.fit(np.c_[bins], variance, counts ** count_weight_gamma)
sensitivity = model.coef_[0]
zero_level = - model.intercept_ / model.coef_[0]
self.photon_sensitivity = sensitivity
self.dark_signal = zero_level
self.fitted_pixels_var = variance
self.fitted_pixels_mean = np.c_[bins]
self.fitted_model = model
self.min_intensity = bins.start
self.max_intensity = bins.stop
self.counts = counts
return [self.photon_sensitivity, self.dark_signal]
def plot_poisson_curve(self):
"""Obtain a plot showing Poisson characteristics of the signal.
Returns:
A figure.
"""
if self.fitted_pixels_mean is None:
raise ValueError("You need to compute the photon gain parameters first.")
else:
fig = plt.figure()
plt.scatter(self.fitted_pixels_mean, self.fitted_pixels_var, s=1)
mean_range = np.linspace(self.fitted_pixels_mean.min(), self.fitted_pixels_mean.max(), num=200)
plt.plot(mean_range, (mean_range - self.dark_signal)* self.photon_sensitivity, 'r')
plt.grid(True)
plt.xlabel('intensity')
plt.ylabel('variance')
return fig
class RasterCalibratePhotons(CalibratePhotons):
def __init__(self, data_array_movie):
# We call the parent class
super().__init__(data_array_movie)
self.photon_sensitivity = None
self.dark_signal = None
self.group_images = None
self.image_gain = None
self.image_offset = None
self.fitted_pixels = None
self.fitted_pixels_var = None
self.fitted_pixels_mean = None
def plot_assignment_image(self):
"""Plot the assignment image. This shows the pixels that are assigned to each group."""
"""Each group correspond to pixels associated with a different photon gain and offset."""
if self.group_images is None:
raise ValueError("You need to compute the photon gain parameters first.")
fig = plt.figure()
size_x_subplots = 2
size_y_subplots = len(self.group_images) // size_x_subplots + 1
for local_index, local_image in enumerate(self.group_images):
plt.subplot(size_y_subplots, size_x_subplots, local_index + 1)
plt.title(f"Group {local_index}")
plt.imshow(local_image, cmap="gray", interpolation='none')
plt.axis("off")
return fig
def plot_photon_sensitivity_image(self):
"""Plot the photon gain and offset images. These are the images that show the photon gain and offset for each pixel."""
if self.image_gain is None:
raise ValueError("You need to compute the photon gain parameters first.")
fig = plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(self.image_gain, cmap="gray", interpolation='none')
plt.colorbar()
plt.axis("off")
plt.title("Photon Gain")
plt.subplot(1, 2, 2)
plt.imshow(self.image_offset, cmap="gray", interpolation='none')
plt.colorbar()
plt.axis("off")
plt.title("Photon Offset")
return fig
def plot_poisson_curve(self):
"""Obtain a plot showing Poisson characteristics of the signal.
Returns:
A figure.
"""
if self.fitted_pixels_mean is None:
raise ValueError("You need to compute the photon gain parameters first.")
else:
fig = plt.figure()
h, xedges, yedges = np.histogram2d(
self.fitted_pixels_var, self.fitted_pixels_mean, bins=(200, 200)
)
extent = [yedges[0], yedges[-1], xedges[0], xedges[-1]]
plt.imshow(h, origin="lower", extent=extent, aspect="auto", cmap="Blues")
plt.colorbar()
plt.xlabel("Mean")
plt.ylabel("Variance")
plt.xlim(self.fitted_pixels_mean.min(), self.fitted_pixels_mean.max())
plt.ylim(self.fitted_pixels_var.min(), self.fitted_pixels_var.max())
mean_range = np.linspace(self.fitted_pixels_mean.min(), self.fitted_pixels_mean.max(), num=200)
for index, local_gain in enumerate(self.photon_sensitivity):
local_offset = self.dark_signal[index]
plt.tight_layout()
plt.plot(
mean_range,
local_gain * (mean_range - local_offset),
'r',
label=f"Line {index}",
)
plt.legend()
return fig
def get_photon_sensitivity_parameters(self, max_pixel_range=2**15, n_groups=1, perc_min=3, perc_max=90):
"""Photon Gain.
Extract the photon gain parameters from the data. This is useful for understanding the
characteristics of the data and for calibrating the data.
We assume there are n_groups of pixels to fit, each with their own photon gain and offset.
When dealing with raster scanning microscopes, there can be multiple groups of pixels with
different characteristics.
Args:
n_groups: The number of groups of pixels to fit. This is useful for separating pixels
with different characteristics. An optimization will be performed to match the
data with n_groups lines.
max_pixel_range: This is the maximum pixel value that is considered to be saturated.
This is useful for removing saturated pixels from the analysis.
perc_min, perc_max: Min and max values between 0-100 used in filtering based on percentile.
This is useful for removing pixels that deviate from Poisson statistics, for example if their
mean fluctuates too much due to other sources of signal in the data.
Returns:
A list with the photon gain and offset for each group of pixels.
"""
# Remove saturated pixels
idxs_not_saturated = np.where(self.data_array_movie.max(axis=0).flatten() < max_pixel_range)
_var = self.data_array_movie.var(axis=0).flatten()[idxs_not_saturated]
_mean = self.get_mean_image().flatten()[idxs_not_saturated]
# Remove pixels that deviate from Poisson stats
_var_scale = np.percentile(_var, [perc_min, perc_max])
_mean_scale = np.percentile(_mean, [perc_min, perc_max])
# Remove outliers
_var_bool = np.logical_and(_var > _var_scale[0], _var < _var_scale[1])
_mean_bool = np.logical_and(_mean > _mean_scale[0], _mean < _mean_scale[1])
_no_outliers = np.logical_and(_var_bool, _mean_bool)
_var_filt = _var[_no_outliers]
_mean_filt = _mean[_no_outliers]
self.fitted_pixels = idxs_not_saturated[0][_no_outliers]
self.fitted_pixels_var = _var_filt
self.fitted_pixels_mean = _mean_filt
if n_groups == 1:
nb_attempts = 1
print("Fitting a single line, a single attempt will be made, since this is a convex problem.")
else:
nb_attempts = 5
print(f"Fitting {n_groups} lines, {nb_attempts} attempts will be made, since this is a non-convex problem.")
found_fits = self.fit_xlines(_var_filt, _mean_filt, n_groups, nb_attempts)
photon_sensitivity_list = []
dark_signal_list = []
for i in range(found_fits.shape[0]):
slope = found_fits[i, 0]
offset = found_fits[i, 1]
photon_sensitivity_list.append(slope)
dark_signal_list.append(-offset/slope)
self.photon_sensitivity = np.array(photon_sensitivity_list)
self.dark_signal = np.array(dark_signal_list)
return [self.photon_sensitivity, self.dark_signal]
# Define the regression model (line equation)
def linear_model(self, params_flat, x, num_lines):
"""Linear model for fitting multiple lines."""
# Reshape the flattened parameters
params = params_flat.reshape((-1, 2))
# We add as many rows to x as there are parameters
X = np.vstack([x for i in range(num_lines)])
# Calculate the predicted y-values for all lines
y_predicted = np.multiply(params[:, 0], X.T) + np.multiply(params[:, 1], np.ones(X.T.shape))
return y_predicted
# Define the sum of squared differences as the objective function
def objective(self, params_flat, x, y_observed, num_lines):
"""Objective function for fitting multiple lines."""
all_predicted_y = self.linear_model(params_flat, x, num_lines).T
Y = np.vstack([y_observed for i in range(num_lines)])
# Calculate the sum of squared differences for all lines
local_error = (Y - all_predicted_y)**2
# get the best line for each point
best_fit = np.min(local_error, axis=0)
# get the total error across all points
total_error = np.sum(best_fit)
return total_error
def fit_xlines(self, variance_array, mean_array, n_groups, nb_attempts):
"""Fit multiple lines to the data. This is useful for separating pixels with different characteristics."""
_mat = np.vstack([mean_array, np.ones(len(mean_array))]).T
# We first fit a single line to reference the data for all the lines
slope, offset = np.linalg.lstsq(_mat, variance_array, rcond=None)[0]
# define the model
training_data = np.column_stack((mean_array, (variance_array-offset)/slope))
current_best_error = np.inf
for iteration in np.arange(nb_attempts):
initial_guesses_flat = np.array([1, 0]*n_groups)+0.1*(np.random.rand(2*n_groups)-0.5)
local_result = minimize(self.objective, initial_guesses_flat, args=(training_data[:,0], training_data[:,1], n_groups), method='Powell')
error = local_result.fun
print(f"Attempt {iteration+1} - Error: {error}")
if error<current_best_error:
current_best_error = error
result = local_result
found_lines = result.x.reshape((-1, 2))
# We convert back to original coordinate system
found_lines[:,0] = found_lines[:,0]*slope
found_lines[:,1] = found_lines[:,1]*slope + offset
print(f"Found lines: {found_lines}")
return found_lines
def get_pixel_assignement_images(self):
"""Get the pixel assignment images. This is useful for understanding the pixels that are assigned to each group."""
if self.photon_sensitivity is None:
raise ValueError("You need to compute the photon gain parameters first.")
if self.group_images is not None:
return self.group_images, self.image_gain, self.image_offset
image_project = self.get_mean_image()
pixel_coords = self.fitted_pixels
# We measure the fitting error for each pixel and for each line
all_error = []
for index, local_gain in enumerate(self.photon_sensitivity):
local_offset = self.dark_signal[index]
error = (self.fitted_pixels_var - local_gain * (self.fitted_pixels_mean - local_offset))**2
all_error.append(error)
all_error = np.array(all_error)
# We assign each pixel to the line that minimizes the error
closest = np.argmin(all_error, axis = 0)
image_gain = np.nan*np.ones(image_project.shape).flatten()
image_offset = np.nan*np.ones(image_project.shape).flatten()
group_images = []
for local_index, local_gain in enumerate(self.photon_sensitivity):
plt.subplot(2,2,local_index+1)
selected_pixels = np.where(closest==local_index)[0]
local_project_copy = np.zeros(image_project.shape).flatten()
local_project_copy[pixel_coords[selected_pixels]]=1
image_gain[pixel_coords[selected_pixels]]=local_gain
image_offset[pixel_coords[selected_pixels]]=self.dark_signal[local_index]
local_project_copy = local_project_copy.reshape(image_project.shape)
group_images.append(local_project_copy)
image_gain = image_gain.reshape(image_project.shape)
image_offset = image_offset.reshape(image_project.shape)
self.group_images = group_images
self.image_gain = image_gain
self.image_offset = image_offset
return group_images, image_gain, image_offset