-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtlc.py
93 lines (83 loc) · 2.96 KB
/
tlc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Version 3.0
# Author: Son Nguyen Manh
# Github: https://github.com/ngmsonn
# Website: https://ngmsonn.github.io/
from PIL import Image
from scipy.signal import savgol_filter
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import math
def tlc2peaks(input_img, background):
""" Create peaks from TLC image.
Args:
input_img: Path to TLC image
background: Choose color background of TLC image. W (White), B (Black), G (Green) and BL (Blue)
"""
org_img = cv2.imread(input_img)
rbg_img = cv2.cvtColor(org_img, cv2.COLOR_BGR2RGB)
axis_x = []
axis_y = []
# White and green color background of TLC image
if background == "W" or "G":
mean_RGB = []
for i in range(rbg_img.shape[0]):
for k in range(rbg_img.shape[1]):
mean_RGB.append(rbg_img[i, k].mean())
max_mean_rgb = max(mean_RGB)
for h in range(int(rbg_img.shape[1])):
axis_x.append(h)
for j in range(int(rbg_img.shape[1])):
R = int(rbg_img[int((rbg_img.shape[0]/2)), j][0])
G = int(rbg_img[int((rbg_img.shape[0]/2)), j][1])
B = int(rbg_img[int((rbg_img.shape[0]/2)), j][2])
I = int(max_mean_rgb-(R+G+B)/3)
axis_y = np.append(axis_y, I)
elif background == "BL" or "B":
for h in range(int(rbg_img.shape[1])):
axis_x.append(h)
for j in range(int(rbg_img.shape[1])):
R = int(rbg_img[int((rbg_img.shape[0]/2)), j][0])
G = int(rbg_img[int((rbg_img.shape[0]/2)), j][1])
B = int(rbg_img[int((rbg_img.shape[0]/2)), j][2])
I = int((R+G+B)/3)
axis_y = np.append(axis_y, I)
else:
print("Error!!!")
return plt.plot(axis_x, axis_y)
def get_meanRGB(input_img):
"""Get RGB value of each pixel
Args:
input_img: Path to image.
"""
org_img = cv2.imread(input_img)
rbg_img = cv2.cvtColor(org_img, cv2.COLOR_BGR2RGB)
mean_RGB = []
for i in range(rbg_img.shape[0]):
for k in range(rbg_img.shape[1]):
mean_RGB.append(rbg_img[i, k].mean())
return np.array(mean_RGB)
def get_RGB(input_img):
"""Get RGB value of each pixel
Args:
input_img: Path to image.
"""
org_img = cv2.imread(input_img)
rbg_img = cv2.cvtColor(org_img, cv2.COLOR_BGR2RGB)
RGB = []
for i in range(rbg_img.shape[0]):
for k in range(rbg_img.shape[1]):
RGB.append(rbg_img[i, k])
return np.array(RGB)
def get_RGB_row(input_img, pxrow):
org_img = cv2.imread(input_img)
rbg_img = cv2.cvtColor(org_img, cv2.COLOR_BGR2RGB)
mean_RGB_row = []
for j in range(int(rbg_img.shape[1])):
R = int(rbg_img[int((pxrow)), j][0])
G = int(rbg_img[int((pxrow)), j][1])
B = int(rbg_img[int((pxrow)), j][2])
I = int((R+G+B)/3)
mean_RGB_row = np.append(mean_RGB_row, I)
return np.array(mean_RGB_row)