-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkCRSS.f
169 lines (126 loc) · 6.08 KB
/
kCRSS.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
********************************************************
** KCRSS calculates the CRSS of slip and twin systems **
********************************************************
SUBROUTINE kCRSS(iphase,tauc,nSys,G12,burgerv,gndtot,irradiate,
+ tauSolute,gndcut,rhofor,rhosub,Temperature,homogtwin,
+ nTwinStart,nTwinEnd,twinvolfrac,tauctwin,nTwin,TwinIntegral,
+ twinvolfractotal,twinon)
INCLUDE 'ABA_PARAM.INC'
! crystal type
INTEGER,intent(in) :: iphase
! number of slip systems
INTEGER,intent(in) :: nSys
! total number of twin systems
INTEGER,intent(in) :: nTwin
! shear modulus for Taylor dislocation law
REAL*8,intent(in) :: G12
! Burgers vectors
REAL*8,intent(in) :: burgerv(nSys)
! scalar total GND density
REAL*8,intent(in) :: gndtot
! activate irradiation effect
INTEGER,intent(in) :: irradiate
! increase in tauc due to solute force
REAL*8,intent(in) :: tauSolute
! GND density (immobile)
REAL*8,intent(in) :: gndcut(nSys)
! forest dislocation density
REAL*8,intent(in) :: rhofor(nSys)
! substructure dislocation density
REAL*8,intent(in) :: rhosub
! Current temperature
REAL*8,intent(in) :: Temperature
! homogenize twin model
INTEGER,intent(in) :: homogtwin
! the active twins are the ones in the
! interval [nTwinStart,nTwinEnd] in the
! twin system file
INTEGER,intent(in) :: nTwinStart,nTwinEnd
! twin systems activation flag
INTEGER,intent(in) :: twinon
! twin volume fraction
REAL*8,intent(in) :: twinvolfrac(nTwin)
! average of the twin volume fraction
! over the neighbourhood
! two twin systems
REAL*8,intent(in) :: TwinIntegral(nTwin)
! total twin volume fraction
REAL*8,intent(in) :: twinvolfractotal
! critical resolved shear stress of slip systems
REAL*8,intent(inout) :: tauc(nSys)
! critical resolved shear stress of twin systems
REAL*8,intent(inout) :: tauctwin(nTwin)
INTEGER :: i
! check crystal type
if (iphase == 1) then
! Taylor dislocation law
tauc = tauc + 0.0065*G12*(burgerv(1))*sqrt(gndtot)
if (irradiate == 1) then
tauc = tauc + tauSolute
end if
else if (iphase == 2) then
! Taylor dislocation law
tauc = tauc + 0.32*G12*(burgerv(1))*sqrt(gndcut)
else if (iphase == 5) then
! alpha-Uranium model with forest and substructure dislocations
! R.J. McCabe, L. Capolungo, P.E. Marshall, C.M. Cady, C.N. Tomé
! Deformation of wrought uranium: Experiments and modeling
! Acta Materialia 58 (2010) 5447–5459
tauc(1) = tauc(1) + 19.066 * sqrt(rhofor(1)) + 1.8218 * sqrt(rhosub) * log(1.0 / (burgerv(1) * sqrt(rhosub)))
tauc(2) = tauc(2) + 18.832 * sqrt(rhofor(2)) + 1.7995 * sqrt(rhosub) * log(1.0 / (burgerv(2) * sqrt(rhosub)))
tauc(3) = tauc(3) + 54.052 * sqrt(rhofor(3)) + 5.1650 * sqrt(rhosub) * log(1.0 / (burgerv(3) * sqrt(rhosub)))
tauc(4) = tauc(4) + 54.052 * sqrt(rhofor(4)) + 5.1650 * sqrt(rhosub) * log(1.0 / (burgerv(4) * sqrt(rhosub)))
tauc(5) = tauc(5) + 123.357 * sqrt(rhofor(5)) + 11.7875 * sqrt(rhosub) * log(1.0 / (burgerv(5) * sqrt(rhosub)))
tauc(6) = tauc(6) + 123.357 * sqrt(rhofor(6)) + 11.7875 * sqrt(rhosub) * log(1.0 / (burgerv(6) * sqrt(rhosub)))
tauc(7) = tauc(7) + 123.357 * sqrt(rhofor(7)) + 11.7875 * sqrt(rhosub) * log(1.0 / (burgerv(7) * sqrt(rhosub)))
tauc(8) = tauc(8) + 123.357 * sqrt(rhofor(8)) + 11.7875 * sqrt(rhosub) * log(1.0 / (burgerv(8) * sqrt(rhosub)))
! Zecevic 2016 temperature dependence
tauc(1) = tauc(1) * exp(-(Temperature-293.0)/140.0)
tauc(2) = tauc(2) * exp(-(Temperature-293.0)/140.0)
tauc(3) = tauc(3) * exp(-(Temperature-293.0)/140.0)
tauc(4) = tauc(4) * exp(-(Temperature-293.0)/140.0)
tauc(5) = tauc(5) * exp(-(Temperature-293.0)/140.0)
tauc(6) = tauc(6) * exp(-(Temperature-293.0)/140.0)
tauc(7) = tauc(7) * exp(-(Temperature-293.0)/140.0)
tauc(8) = tauc(8) * exp(-(Temperature-293.0)/140.0)
! Daniel, Lesage, 1971 minimum value as minima
tauc(1) = max(tauc(1),4.0)
tauc(2) = max(tauc(2),4.0)
tauc(3) = max(tauc(3),4.0)
tauc(4) = max(tauc(4),4.0)
tauc(5) = max(tauc(5),4.0)
tauc(6) = max(tauc(6),4.0)
tauc(7) = max(tauc(7),4.0)
tauc(8) = max(tauc(8),4.0)
if (twinon == 1) then ! twin active
if (homogtwin == 1) then ! homogenized twin model
! add cross hardening of one twin system on the other
DO i=nTwinStart,nTwinEnd
tauctwin(i) = tauctwin(i) + 96.79*twinvolfractotal
END DO
else ! discrete twin model
! add hardening in the nucleation stage
! 50% is the critical twin volume fraction at which the
! softest value is reached
DO i=nTwinStart,nTwinEnd
if (twinvolfrac(i) < 0.5) then
tauctwin(i) = tauctwin(i) + 37.5*(0.5-twinvolfrac(i))
tauctwin(i) = tauctwin(i) + 2000.0*TwinIntegral(i)
else ! twinvolfrac(i) > 0.5
tauctwin(i) = tauctwin(i) + 37.5*(twinvolfrac(i)-0.5)
tauctwin(i) = tauctwin(i) + 2000.0*TwinIntegral(i)
end if
END DO
! local interaction between twin systems
! only when threshold is passed
if (twinvolfrac(nTwinEnd) > 0.5) then
tauctwin(nTwinStart) = tauctwin(nTwinStart) + 200.0*twinvolfrac(nTwinEnd)
end if
if (twinvolfrac(nTwinStart) > 0.5) then
tauctwin(nTwinEnd) = tauctwin(nTwinEnd) + 200.0*twinvolfrac(nTwinStart)
end if
end if ! choice of twin model (homogeneous/discrete)
end if ! twin active
end if ! check crystal type
RETURN
END