forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlab-07-3-linear_regression_min_max.py
113 lines (98 loc) · 2.83 KB
/
lab-07-3-linear_regression_min_max.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility
def min_max_scaler(data):
numerator = data - np.min(data, 0)
denominator = np.max(data, 0) - np.min(data, 0)
# noise term prevents the zero division
return numerator / (denominator + 1e-7)
xy = np.array(
[
[828.659973, 833.450012, 908100, 828.349976, 831.659973],
[823.02002, 828.070007, 1828100, 821.655029, 828.070007],
[819.929993, 824.400024, 1438100, 818.97998, 824.159973],
[816, 820.958984, 1008100, 815.48999, 819.23999],
[819.359985, 823, 1188100, 818.469971, 818.97998],
[819, 823, 1198100, 816, 820.450012],
[811.700012, 815.25, 1098100, 809.780029, 813.669983],
[809.51001, 816.659973, 1398100, 804.539978, 809.559998],
]
)
# very important. It does not work without it.
xy = min_max_scaler(xy)
print(xy)
'''
[[0.99999999 0.99999999 0. 1. 1. ]
[0.70548491 0.70439552 1. 0.71881782 0.83755791]
[0.54412549 0.50274824 0.57608696 0.606468 0.6606331 ]
[0.33890353 0.31368023 0.10869565 0.45989134 0.43800918]
[0.51436 0.42582389 0.30434783 0.58504805 0.42624401]
[0.49556179 0.42582389 0.31521739 0.48131134 0.49276137]
[0.11436064 0. 0.20652174 0.22007776 0.18597238]
[0. 0.07747099 0.5326087 0. 0. ]]
'''
x_data = xy[:, 0:-1]
y_data = xy[:, [-1]]
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 4])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([4, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis
hypothesis = tf.matmul(X, W) + b
# Simplified cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize
train = tf.train.GradientDescentOptimizer(learning_rate=1e-5).minimize(cost)
# Launch the graph in a session.
with tf.Session() as sess:
# Initializes global variables in the graph.
sess.run(tf.global_variables_initializer())
for step in range(101):
_, cost_val, hy_val = sess.run(
[train, cost, hypothesis], feed_dict={X: x_data, Y: y_data}
)
print(step, "Cost: ", cost_val, "\nPrediction:\n", hy_val)
'''
0 Cost: 0.15230925
Prediction:
[[ 1.6346191 ]
[ 0.06613699]
[ 0.3500818 ]
[ 0.6707252 ]
[ 0.61130744]
[ 0.61464405]
[ 0.23171967]
[-0.1372836 ]]
1 Cost: 0.15230872
Prediction:
[[ 1.634618 ]
[ 0.06613836]
[ 0.35008252]
[ 0.670725 ]
[ 0.6113076 ]
[ 0.6146443 ]
[ 0.23172 ]
[-0.13728246]]
...
99 Cost: 0.1522546
Prediction:
[[ 1.6345041 ]
[ 0.06627947]
[ 0.35014683]
[ 0.670706 ]
[ 0.6113161 ]
[ 0.61466044]
[ 0.23175153]
[-0.13716647]]
100 Cost: 0.15225402
Prediction:
[[ 1.6345029 ]
[ 0.06628093]
[ 0.35014752]
[ 0.67070574]
[ 0.61131614]
[ 0.6146606 ]
[ 0.23175186]
[-0.13716528]]
'''