forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlab-09-x-xor-nn-back_prop.py
executable file
·111 lines (89 loc) · 2.88 KB
/
lab-09-x-xor-nn-back_prop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Lab 9 XOR-back_prop
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility
learning_rate = 0.1
x_data = [[0, 0],
[0, 1],
[1, 0],
[1, 1]]
y_data = [[0],
[1],
[1],
[0]]
x_data = np.array(x_data, dtype=np.float32)
y_data = np.array(y_data, dtype=np.float32)
X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
W1 = tf.Variable(tf.random_normal([2, 2]), name='weight1')
b1 = tf.Variable(tf.random_normal([2]), name='bias1')
l1 = tf.sigmoid(tf.matmul(X, W1) + b1)
W2 = tf.Variable(tf.random_normal([2, 1]), name='weight2')
b2 = tf.Variable(tf.random_normal([1]), name='bias2')
Y_pred = tf.sigmoid(tf.matmul(l1, W2) + b2)
# cost/loss function
cost = -tf.reduce_mean(Y * tf.log(Y_pred) + (1 - Y) *
tf.log(1 - Y_pred))
# Network
# p1 a1 l1 p2 a2 l2 (y_pred)
# X -> (*) -> (+) -> (sigmoid) -> (*) -> (+) -> (sigmoid) -> (loss)
# ^ ^ ^ ^
# | | | |
# W1 b1 W2 b2
# Loss derivative
d_Y_pred = (Y_pred - Y) / (Y_pred * (1.0 - Y_pred) + 1e-7)
# Layer 2
d_sigma2 = Y_pred * (1 - Y_pred)
d_a2 = d_Y_pred * d_sigma2
d_p2 = d_a2
d_b2 = d_a2
d_W2 = tf.matmul(tf.transpose(l1), d_p2)
# Mean
d_b2_mean = tf.reduce_mean(d_b2, axis=[0])
d_W2_mean = d_W2 / tf.cast(tf.shape(l1)[0], dtype=tf.float32)
# Layer 1
d_l1 = tf.matmul(d_p2, tf.transpose(W2))
d_sigma1 = l1 * (1 - l1)
d_a1 = d_l1 * d_sigma1
d_b1 = d_a1
d_p1 = d_a1
d_W1 = tf.matmul(tf.transpose(X), d_a1)
# Mean
d_W1_mean = d_W1 / tf.cast(tf.shape(X)[0], dtype=tf.float32)
d_b1_mean = tf.reduce_mean(d_b1, axis=[0])
# Weight update
step = [
tf.assign(W2, W2 - learning_rate * d_W2_mean),
tf.assign(b2, b2 - learning_rate * d_b2_mean),
tf.assign(W1, W1 - learning_rate * d_W1_mean),
tf.assign(b1, b1 - learning_rate * d_b1_mean)
]
# Accuracy computation
# True if hypothesis > 0.5 else False
predicted = tf.cast(Y_pred > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
print("shape", sess.run(tf.shape(X)[0], feed_dict={X: x_data}))
for i in range(10001):
sess.run([step, cost], feed_dict={X: x_data, Y: y_data})
if i % 1000 == 0:
print(i, sess.run([cost, d_W1], feed_dict={
X: x_data, Y: y_data}), sess.run([W1, W2]))
# Accuracy report
h, c, a = sess.run([Y_pred, predicted, accuracy],
feed_dict={X: x_data, Y: y_data})
print("\nHypothesis: ", h, "\nCorrect: ", c, "\nAccuracy: ", a)
'''
Hypothesis: [[ 0.01338224]
[ 0.98166382]
[ 0.98809403]
[ 0.01135806]]
Correct: [[ 0.]
[ 1.]
[ 1.]
[ 0.]]
Accuracy: 1.0
'''