-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfasterParser.R
680 lines (539 loc) · 27.3 KB
/
fasterParser.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
## ======================================================================
## This is a much faster version of the oldParser.R
## Code by Tobias Kächele & Felix Schönbrodt
## ======================================================================
library(stringi)
library(dplyr)
# returns the reported precision (i.e., number of decimals) from a string
# e.g. decimals("0.120") == 3
decimals <- function(str) {
locations <- stri_locate_first_fixed(str, '.')[,1]
decs <- nchar(str) - locations
decs[is.na(locations)] <- 0
decs
}
is.one <- function(v) {
!is.na(v) & v==1
}
# txt = "
# t(47) = 2.1
# chi2(1) = 9.15
# r(77) = .47
# F(1, 88) = 9.21
# p = .02
# p(48) = .018
#
# # add reported p-value; mark one-tailed; set alpha level
# t(123) = 2.54; p < .01
# Z = 1.9; one-tailed; p=.03
# r(25) = 0.21; crit=.10
#
# # add paper ID
# A&B (2001) Study1: t(88)=2.1; one-tailed; p < .02
# A&B (2001) Study1: r(147)=.246
# A&B (2001) Study2: F(1,100)=9.1
# CD&E (2014) S1a: F(1,210)=4.45; p < .01
# CD&E (2014) S1b: t(123)=2.01; one-tailed; p = .02
# "
# parses a multiline string
parse_ES <- function(txt, round_up = FALSE) {
if(is.null(txt) || nchar(txt) == 0) {
return(NULL)
}
# split into lines
txt.lines <- stri_split_lines(txt)[[1]]
# remove all comments
txt.lines <- stri_replace_first_regex(txt.lines, '#.*$', '')
# convert chains of whitespace characters to a single space
txt.lines <- stri_replace_all_regex(txt.lines, "\\s+", " ")
# trim all lines
txt.lines <- stri_trim_both(txt.lines)
# find all non empty lines (indices_not_empty represents correct line numbers!)
indices_not_empty <- which(!stri_isempty(txt.lines))
# remove all empty lines
txt.lines <- txt.lines[indices_not_empty]
# number of (non-empty) lines
nlines <- length(txt.lines)
if(nlines == 0) {
return(NULL)
}
# allocate space for error and warning messages
errors <- rep("", nlines)
warning <- rep("", nlines)
# definition of all column names of output matrix
TYPE <- 1
DF1 <- 2
DF2 <- 3
STAT <- 4
SIGN <- 5 # e.g. -1 if stat is -5.3
P.REPORTED <- 6 # e.g. 0.12
P.REPORTED.DECS <- 7 # e.g. 2 if p.reported is 0.12
P.COMP <- 8
CRIT.VALUE <- 9
ONE.TAILED <- 10
P.VALUE <- 11
P.VALUE.ONE <- 12
P.ACTUAL <- 13
G <- 14
D <- 15
N.APPROX <- 16
SIGNIFICANT <- 17
P.REPORTED.ERROR <- 18
P.REPORTED.ERROR.DIRECTION <- 19
IS.FOCAL <- 20
PARSE.ERROR <- 21
D.REPORTED <- 22
D.REPORTED.SIGN <- 23
D.REPORTED.DECS <- 24
D.REPORTED.LOWER <- 25
D.REPORTED.UPPER <- 26
D.REPORTED.ERROR.DIRECTION <- 27
D.REPORTED.ERROR <- 28
REPORTING.ERROR <- 29
P.VALUE.LOG <- 30
D.VAR <- 31
STUDYDESIGN <- 32
# output matrix for all data in numeric form
BIG <- matrix(NA, nrow = nlines, ncol = 32)
# find study labels and extract them (everything before ":")
extraction <- stri_match_first_regex(txt.lines, '^ *(.*?) *(?:(?<=\\)) *(.+?) *)?: *')
txt.lines.edited <- txt.lines
indices_not_na <- which(!is.na(extraction[,1]))
if(length(indices_not_na)) {
txt.lines.edited[indices_not_na] <- stri_replace_first_fixed(txt.lines.edited[indices_not_na], extraction[indices_not_na,1], '')
}
# init paper ids with auto id
PAPER_ID <- paste0(".", as.character(1:nlines))
# init study ids with NA
STUDY_ID <- rep("", nlines)
# get indices for certain rows
indices_paper_id <- which(!is.na(extraction[,2]))
indices_study_id <- which(!is.na(extraction[,3]))
# set paper id respectively
if(length(indices_paper_id))
PAPER_ID[indices_paper_id] <- extraction[indices_paper_id, 2]
if(length(indices_study_id))
STUDY_ID[indices_study_id] <- extraction[indices_study_id, 3]
# is study focal? Underscore at start of id indicates a non-focal test statistic
BIG[,IS.FOCAL] <- ( stri_sub(PAPER_ID, 1, 1) != "_" )
# definition of statistic types and typestrings array
TYPE_T <- 1
TYPE_CHI2 <- 2
TYPE_F <- 3
TYPE_R <- 4
TYPE_Z <- 5
TYPE_P <- 6
TYPESTRINGS <- c('t','chi2','f','r','z', 'p')
# find statistic and extract it
extraction <- stri_match_first_regex(txt.lines.edited, ' *\\b(t|chi2|f|r|z|p)(?: *\\( *((?:\\d*\\.)?\\d+)(?: *, *((?:\\d*\\.)?\\d+))? *\\))? *= *(-?(?:\\d*\\.)?\\d+)[ ,;]*', case_insensitive=TRUE)
indices_not_na <- which(!is.na(extraction[,1]))
if( length(indices_not_na)){
txt.lines.edited[indices_not_na] <- stri_replace_first_fixed(txt.lines.edited[indices_not_na], extraction[indices_not_na,1], ' ')
}
# mark lines without statistic as error
indices_no_statistic <- which(is.na(extraction[,1]))
if (length(indices_no_statistic) > 0)
errors[indices_no_statistic] <- paste0(errors[indices_no_statistic], "\nNo statistic given!")
# store numeric representation for type of statistic
type.factor <- factor(stri_trans_tolower(extraction[,2]), TYPESTRINGS)
BIG[,TYPE] <- unclass(type.factor)
# store first argument enclosed in braces
BIG[,DF1] <- as.numeric(extraction[,3])
# store second argument enclosed in braces
BIG[,DF2] <- as.numeric(extraction[,4])
# store value of statistic
BIG[,STAT] <- as.numeric(extraction[,5])
# store sign of value of statistic
BIG[,SIGN] <- sign(BIG[,STAT])
# round statistic if necessary
if (round_up == TRUE) {
decPlaces <- decimals(extraction[,5])
BIG[,STAT] <- BIG[,STAT] + BIG[,SIGN] * (4.999 / 10^(decPlaces+1))
}
# remove sign from value of statistic
BIG[,STAT] <- abs(BIG[,STAT])
# vectors of indices for each type
is_t <- BIG[,TYPE] == TYPE_T
is_chi2 <- BIG[,TYPE] == TYPE_CHI2
is_f <- BIG[,TYPE] == TYPE_F
is_r <- BIG[,TYPE] == TYPE_R
is_z <- BIG[,TYPE] == TYPE_Z
is_p <- BIG[,TYPE] == TYPE_P
has_df1 <- !is.na(BIG[,DF1])
has_df2 <- !is.na(BIG[,DF2])
indices_t <- which(is_t)
indices_chi2 <- which(is_chi2)
indices_f <- which(is_f)
indices_r <- which(is_r)
indices_z <- which(is_z)
indices_pdirect <- which(is_p)
# find p-value and extract it
# (if the p-value is given as test statistic)
extraction <- stri_match_first_regex(txt.lines.edited, ' *\\bp *(<|<=|=|>) *0*((?:\\d*\\.)?\\d+)[ ,;]*', case_insensitive=TRUE)
p.reported.str <- rep("", nlines)
indices_not_na <- which(!is.na(extraction[,1]))
if( length(indices_not_na)) {
p.reported.str[indices_not_na] <- paste0("p ", extraction[indices_not_na,2], " ", extraction[indices_not_na,3])
txt.lines.edited[indices_not_na] <- stri_replace_first_fixed(txt.lines.edited[indices_not_na], extraction[indices_not_na,1], ' ')
}
# store p-value
BIG[,P.REPORTED] <- as.numeric(extraction[,3])
# store numeric value for each comparator used with p-value
BIG[,P.COMP] <- unclass(factor(extraction[,2], c('<','<=', '=','>')))
# store number of decimals of p-value
BIG[,P.REPORTED.DECS] <- decimals(extraction[,3])
# get indices depending on p-value specification
indices_p <- which(!is.na(BIG[,P.REPORTED]))
indices_p_lt <- which(BIG[,P.COMP] == 1)
indices_p_leq <- which(BIG[,P.COMP] == 2)
indices_p_eq <- which(BIG[,P.COMP] == 3)
indices_p_gt <- which(BIG[,P.COMP] == 4)
# find critical value and extract it
extraction <- stri_match_first_regex(txt.lines.edited, ' *\\bcrit *= *((?:\\d*\\.)?\\d+)[ ,;]*', case_insensitive=TRUE)
indices_not_na <- which(!is.na(extraction[,1]))
if( length(indices_not_na)) {
txt.lines.edited[indices_not_na] <- stri_replace_first_fixed(txt.lines.edited[indices_not_na], extraction[indices_not_na,1], ' ')
}
# store critical value
BIG[,CRIT.VALUE] <- as.numeric(extraction[,2])
# find "one-tailed" and extract it
extraction <- stri_match_first_regex(txt.lines.edited, ' *\\b(one-tailed|1-tailed|one|1t)\\b[ ,;]*', case_insensitive=TRUE)
# store if one-tailed was specified
BIG[,ONE.TAILED] <- !is.na(extraction[,1])
indices_one_tailed <- which(BIG[,ONE.TAILED] == 1)
if( length(indices_one_tailed)) {
txt.lines.edited[indices_one_tailed] <- stri_replace_first_fixed(txt.lines.edited[indices_one_tailed], extraction[indices_one_tailed,1], ' ')
}
# ---------------------------------------------------------------------
# find study design for t-values: between subjects (BS) or within-subjects (WS)?
extraction <- stri_match_first_regex(txt.lines.edited, ' *\\b(BS|WS)\\b[ ,;]*', case_insensitive=TRUE)
BIG[,STUDYDESIGN] <- as.numeric(factor(extraction[,2], levels=c("BS", "WS")))
indices_T_BS <- which(BIG[,STUDYDESIGN] == 1)
indices_T_WS <- which(BIG[,STUDYDESIGN] == 2)
if( length(indices_T_BS)) {
txt.lines.edited[indices_T_BS] <- stri_replace_first_fixed(txt.lines.edited[indices_T_BS], extraction[indices_T_BS,1], ' ')
}
if( length(indices_T_WS)) {
txt.lines.edited[indices_T_WS] <- stri_replace_first_fixed(txt.lines.edited[indices_T_WS], extraction[indices_T_WS,1], ' ')
}
# find Cohen's d with and without CI/SE and extract it
extraction <- stri_match_first_regex(txt.lines.edited, ' *\\bd *= *(-)?0*((?:\\d*\\.)?\\d+) *(?:\\[ *(-?(?:\\d*\\.)?\\d+) *[,;] *(-?(?:\\d*\\.)?\\d+) *\\]|[,; ]*se *= *((?:\\d*\\.)?\\d+))?[ ,;]*', case_insensitive=TRUE)
indices_cohens_d <- which(!is.na(extraction[,1]))
if( length(indices_cohens_d)) {
txt.lines.edited[indices_cohens_d] <- stri_replace_first_fixed(txt.lines.edited[indices_cohens_d], extraction[indices_cohens_d,1], ' ')
}
# store Cohen's d and number of decimals
BIG[,D.REPORTED] <- as.numeric(extraction[,3])
BIG[,D.REPORTED.SIGN] <- ifelse(is.na(extraction[,2]), 1, -1)
BIG[,D.REPORTED] <- BIG[,D.REPORTED] * BIG[,D.REPORTED.SIGN]
BIG[,D.REPORTED.DECS] <- decimals(extraction[,3])
# has Cohen's d?
indices_cohens_d <- which(!is.na(BIG[,D.REPORTED]))
# save how it was reported
d.reported.str <- rep("", nlines)
if(length(indices_cohens_d)) {
d.reported.str[indices_cohens_d] <- paste0("d = ", extraction[indices_cohens_d, 3])
}
# CI specified for Cohen's d?
indices_cohens_d_has_ci <- which(!is.na(extraction[,4]))
# store Cohen's d upper and lower limits if specified
if(length(indices_cohens_d_has_ci)) {
BIG[indices_cohens_d_has_ci, D.REPORTED.LOWER] <- as.numeric(extraction[indices_cohens_d_has_ci, 4])
BIG[indices_cohens_d_has_ci, D.REPORTED.UPPER] <- as.numeric(extraction[indices_cohens_d_has_ci, 5])
# check ci
indices_cohens_d_ci_not_in_order <- which(BIG[, D.REPORTED.LOWER] > BIG[, D.REPORTED.UPPER])
if(length(indices_cohens_d_ci_not_in_order))
errors[indices_cohens_d_ci_not_in_order] <- paste0(errors[indices_cohens_d_ci_not_in_order], "\nLower bounds of CI for Cohen's d are greater than upper bounds!")
indices_cohens_d_ci_not_in_order <- which(BIG[, D.REPORTED.LOWER] > BIG[,D.REPORTED])
if(length(indices_cohens_d_ci_not_in_order))
errors[indices_cohens_d_ci_not_in_order] <- paste0(errors[indices_cohens_d_ci_not_in_order], "\nLower bounds of CI for Cohen's d are greater than Cohen's d!")
indices_cohens_d_ci_not_in_order <- which(BIG[, D.REPORTED.UPPER] < BIG[,D.REPORTED])
if(length(indices_cohens_d_ci_not_in_order))
errors[indices_cohens_d_ci_not_in_order] <- paste0(errors[indices_cohens_d_ci_not_in_order], "\nUpper bounds of CI for Cohen's d are less than Cohen's d!")
}
# SE specified for Cohen's d?
indices_cohens_d_has_se <- which(!is.na(extraction[,6]))
# compute Cohen's d upper and lower limits using SE if specified and store them
if(length(indices_cohens_d_has_se)) {
SE <- as.numeric(extraction[indices_cohens_d_has_se, 6]) * qnorm(0.975)
BIG[indices_cohens_d_has_se, D.REPORTED.LOWER] <- BIG[indices_cohens_d_has_se, D.REPORTED] - SE
BIG[indices_cohens_d_has_se, D.REPORTED.UPPER] <- BIG[indices_cohens_d_has_se, D.REPORTED] + SE
}
# now switch and change sign of upper and lower limits if Cohens'd is negative
indices_cohens_d_neg <- which(BIG[,D.REPORTED] < 0)
if(length(indices_cohens_d_neg)) {
BIG[indices_cohens_d_neg, c(D.REPORTED.UPPER, D.REPORTED.LOWER)] <- -BIG[indices_cohens_d_neg, c(D.REPORTED.LOWER, D.REPORTED.UPPER)]
BIG[indices_cohens_d_neg, D.REPORTED] <- -BIG[indices_cohens_d_neg, D.REPORTED]
}
# trim rest which couldn't be parsed
txt.lines.edited <- stri_trim_both(txt.lines.edited)
# find lines which have an unparseable part
indices_wrong_syntax <- which(!stri_isempty(txt.lines.edited) )
if(length(indices_wrong_syntax) >0 )
errors[indices_wrong_syntax] <- paste0(errors[indices_wrong_syntax], "\nSyntax error. Are there any illegal expressions? Are there conflicting definitions?")
# set default crit.value when no crit value has been specified
indices_crit_na <- which(is.na(BIG[, CRIT.VALUE]))
BIG[indices_crit_na, CRIT.VALUE] <- ifelse(BIG[indices_crit_na, ONE.TAILED], .10, .05)
# ---------------------------------------------------------------------
# error detection / define error messages
indices_df1_missing <- which((is_t | is_chi2 | is_r) & !has_df1)
if(length(indices_df1_missing))
errors[indices_df1_missing] <- paste0(errors[indices_df1_missing], "\nStatistic needs specification of df!")
indices_df2_missing <- which(is_f & !has_df2)
if(length(indices_df2_missing))
errors[indices_df2_missing] <- paste0(errors[indices_df2_missing], "\nStatistic needs specification of second df!")
indices_excessive_df2 <- which((is_t | is_r | is_z) & has_df2)
if(length(indices_excessive_df2))
errors[indices_excessive_df2] <- paste0(errors[indices_excessive_df2], "\nStatistic has two dfs but only one df allowed!")
indices_df_zero <- which(BIG[,DF1] == 0 | BIG[,DF2] == 0)
if(length(indices_df_zero))
errors[indices_df_zero] <- paste0(errors[indices_df_zero], "\nDfs of statistic must be greater than zero!")
indices_df1_real <- which((is_chi2 | is_z | is_r) & (round(BIG[,DF1]) != BIG[,DF1] ))
if(length(indices_df1_real))
errors[indices_df1_real] <- paste0(errors[indices_df1_real], "\nFirst df of statistic must be an integer value!")
indices_df2_real <- which(is_chi2 & (round(BIG[,DF2]) != BIG[,DF2] ))
if(length(indices_df2_real))
errors[indices_df2_real] <- paste0(errors[indices_df2_real], "\nSecond df of statistic must be an integer value!")
indices_stat_neg <- which((is_f | is_chi2) & BIG[,SIGN] == -1)
if(length(indices_stat_neg))
errors[indices_stat_neg] <- paste0(errors[indices_stat_neg], "\nStatistic must be greater or equal 0!")
indices_p_outofrange <- which(is_p & (BIG[ ,STAT] > 1 | BIG[,SIGN] == -1))
if(length(indices_p_outofrange))
errors[indices_p_outofrange] <- paste0(errors[indices_p_outofrange], "\np-values must be between 0 and 1!")
indices_stat_out_of_bounds <- which(is_r & BIG[,STAT] > 1)
if(length(indices_stat_out_of_bounds))
errors[indices_stat_out_of_bounds] <- paste0(errors[indices_stat_out_of_bounds], "\nStatistic must be >= -1 and <= +1!")
indices_p_out_of_bounds <- which(BIG[,P.REPORTED] > 1)
if(length(indices_p_out_of_bounds))
errors[indices_p_out_of_bounds] <- paste0(errors[indices_p_out_of_bounds], "\np-value must be less or equal 1!")
indices_crit_out_of_bounds <- which(BIG[,CRIT.VALUE] > 1)
if(length(indices_crit_out_of_bounds))
errors[indices_crit_out_of_bounds] <- paste0(errors[indices_crit_out_of_bounds], "\nCritical value must be less or equal 1!")
indices_tF_without_design <- which((is_t | is_f) & is.na(BIG[,STUDYDESIGN]))
if(length(indices_tF_without_design))
warning[indices_tF_without_design] <- paste0(warning[indices_tF_without_design], "\nWarning: t- or F-value is reported without design. <i>Effect size computations assume a <u>between-subject</u> design!</i> Add \"; BS\" for between subject design; add \"; WS\" for within subject design)")
# compute t-statistic
if(length(indices_t))
{
BIG[indices_t, P.VALUE] <- pt(BIG[indices_t, STAT], BIG[indices_t, DF1], lower.tail=FALSE) * 2
BIG[indices_t, P.VALUE.LOG] <- pt(BIG[indices_t, STAT], BIG[indices_t, DF1], lower.tail=FALSE, log.p = TRUE) + log(2)
BIG[indices_t, N.APPROX] <- BIG[indices_t, DF1] + 2
# Which studies are between-SS, which within-SS?
BS_design <- which(BIG[,TYPE] == TYPE_T & (BIG[,STUDYDESIGN] == 1 | is.na(BIG[,STUDYDESIGN])))
WS_design <- which(BIG[,TYPE] == TYPE_T & BIG[,STUDYDESIGN] == 2)
# compute between effect size
BIG[BS_design, D] <- (2*BIG[BS_design, STAT] / sqrt(BIG[BS_design, N.APPROX])) * BIG[BS_design, SIGN]
# compute within effect size
BIG[WS_design, D] <- (BIG[WS_design, STAT] / sqrt(BIG[WS_design, N.APPROX])) * BIG[WS_design, SIGN]
BIG[indices_t, G] <- BIG[indices_t, D] * ( 1- (3/(4 * BIG[indices_t, N.APPROX] - 1)))
#BIG[indices_t, D.VAR] <- 4/BIG[indices_t, N.APPROX] + BIG[indices_t, D]^2 / (2*BIG[indices_t, N.APPROX])
BIG[indices_t, D.VAR] <- (4 + BIG[indices_t, D]^2) / BIG[indices_t, N.APPROX]
}
# compute pearson's r
if(length(indices_r))
{
# t value from correlation
t.r <- BIG[indices_r, STAT]*sqrt(BIG[indices_r, DF1] / (1 - BIG[indices_r, STAT]^2))
BIG[indices_r, P.VALUE] <- pt(t.r, BIG[indices_r, DF1], lower.tail=FALSE) * 2
BIG[indices_r, P.VALUE.LOG] <- pt(t.r, BIG[indices_r, DF1], lower.tail=FALSE, log.p = TRUE) + log(2)
BIG[indices_r, D] <- BIG[indices_r, SIGN] * (2 * BIG[indices_r, STAT]) / sqrt(1 - BIG[indices_r, STAT]^2)
BIG[indices_r, G] <- BIG[indices_r, D] * (1 - (3 / (4 * BIG[indices_r, DF1] - 1)))
BIG[indices_r, N.APPROX] <- BIG[indices_r, DF1] + 2
var.r <- (1 - BIG[indices_r, STAT]^2)^2/(BIG[indices_r, N.APPROX] - 1)
BIG[indices_r, D.VAR] <- 4 * var.r/(1 - BIG[indices_r, STAT]^2)^3
}
# compute f-statistic
if(length(indices_f))
{
indices_f_df1_is_1 <- which(BIG[,TYPE] == 3 & BIG[,DF1] == 1)
if(length(indices_f_df1_is_1))
{
BIG[indices_f_df1_is_1, N.APPROX] <- BIG[indices_f_df1_is_1, DF2] + 2
# Which studies are between-SS, which within-SS?
BS_design <- which(BIG[,TYPE] == TYPE_F & BIG[,DF1] == 1 & (BIG[,STUDYDESIGN] == 1 | is.na(BIG[,STUDYDESIGN])))
WS_design <- which(BIG[,TYPE] == TYPE_F & BIG[,DF1] == 1 & BIG[,STUDYDESIGN] == 2)
# compute between effect size
BIG[BS_design, D] <- (2*sqrt(BIG[BS_design, STAT]) / sqrt(BIG[BS_design, N.APPROX])) * BIG[BS_design, SIGN]
# compute within effect size
BIG[WS_design, D] <- sqrt(BIG[WS_design, STAT] /BIG[WS_design, N.APPROX]) * BIG[WS_design, SIGN]
BIG[indices_f_df1_is_1, G] <- BIG[indices_f_df1_is_1, D] * ( 1- (3/(4 * BIG[indices_f_df1_is_1, N.APPROX] - 1)))
#BIG[indices_f_df1_is_1, D.VAR] <- 4/BIG[indices_f_df1_is_1, N.APPROX] + BIG[indices_f_df1_is_1, D]^2 / (2*BIG[indices_f_df1_is_1, N.APPROX])
BIG[indices_f_df1_is_1, D.VAR] <- (4 + BIG[indices_f_df1_is_1, D]^2) / BIG[indices_f_df1_is_1, N.APPROX]
}
BIG[indices_f, P.VALUE.LOG] <- pf(BIG[indices_f, STAT], BIG[indices_f, DF1], BIG[indices_f, DF2], lower.tail=FALSE, log.p = TRUE)
BIG[indices_f, P.VALUE] <- exp(BIG[indices_f, P.VALUE.LOG])
}
# compute z-value
if(length(indices_z) ) {
BIG[indices_z, P.VALUE] <- pnorm(BIG[indices_z, STAT], lower.tail=FALSE) * 2
BIG[indices_z, P.VALUE.LOG] <- pnorm(BIG[indices_z, STAT], lower.tail=FALSE, log.p = TRUE) + log(2)
indices_z_df_exists <- which(BIG[, TYPE] == TYPE_Z & !is.na(BIG[, DF1]))
if(length(indices_z_df_exists) ){
# If a number is provided for z it's the sample size
BIG[indices_z_df_exists, N.APPROX] <- BIG[indices_z_df_exists,DF1]
BIG[indices_z_df_exists, D] <- (BIG[indices_z_df_exists, STAT] / sqrt(BIG[indices_z_df_exists, N.APPROX])) * BIG[indices_z_df_exists, SIGN]
BIG[indices_z_df_exists, G] <- BIG[indices_z_df_exists, D] * (1 - (3 / (4 * BIG[indices_z_df_exists, N.APPROX] - 1)))
}
}
# compute chi2-statistic
if(length(indices_chi2)){
# If two numbers are provided for chi2, the first are the dfs, the second is the sample size
BIG[indices_chi2, P.VALUE] <- pchisq(BIG[indices_chi2, STAT], BIG[indices_chi2, DF1], lower.tail=FALSE)
BIG[indices_chi2, P.VALUE.LOG] <- pchisq(BIG[indices_chi2, STAT], BIG[indices_chi2, DF1], lower.tail=FALSE, log.p = TRUE)
indices_chi2_with_n <- which(BIG[,TYPE] == TYPE_CHI2 & BIG[,DF1] == 1 & !is.na(BIG[,DF2]))
if(length(indices_chi2_with_n)) {
BIG[indices_chi2_with_n, N.APPROX] <- BIG[indices_chi2_with_n, DF2]
BIG[indices_chi2_with_n, D] <- sqrt(BIG[indices_chi2_with_n, STAT] / BIG[indices_chi2_with_n, N.APPROX])
BIG[indices_chi2_with_n, D] <- 2 * BIG[indices_chi2_with_n, D] * sqrt((BIG[indices_chi2_with_n, N.APPROX] - 1)/(BIG[indices_chi2_with_n, N.APPROX] * (1 - BIG[indices_chi2_with_n, D]^2))) * abs(BIG[indices_chi2_with_n, D])/BIG[indices_chi2_with_n, D]
BIG[indices_chi2_with_n, G] <- BIG[indices_chi2_with_n, D] * (1 - (3/(4 * (BIG[indices_chi2_with_n, N.APPROX]-2) - 1)))
}
}
# compute directly entered p-value
if(length(indices_pdirect) ) {
BIG[indices_pdirect, P.REPORTED] <- BIG[indices_pdirect, STAT]
# assume that the directly reported p-value is the correct p-value;
BIG[indices_pdirect, P.VALUE] <- BIG[indices_pdirect, STAT]
BIG[indices_pdirect, P.VALUE.LOG] <- log(BIG[indices_pdirect, STAT])
# If one-tailed, the actual p-value is double the size
BIG[indices_pdirect, P.VALUE][BIG[indices_pdirect, ONE.TAILED] == 1] <- BIG[indices_pdirect, P.VALUE][BIG[indices_pdirect, ONE.TAILED] == 1]*2
BIG[indices_pdirect, P.VALUE.LOG][BIG[indices_pdirect, ONE.TAILED] == 1] <- BIG[indices_pdirect, P.VALUE.LOG][BIG[indices_pdirect, ONE.TAILED] == 1]+ log(2)
indices_pdirect_df_exists <- which(BIG[, TYPE] == TYPE_P & !is.na(BIG[, DF1]))
if(length(indices_pdirect_df_exists) ){
# conversion formula for converting p to d, see: https://books.google.de/books?id=GC42CwAAQBAJ&pg=PA100&lpg=PA100&dq=meta-analysis+convert+chi2+to+d+degrees+of+freedom&source=bl&ots=_c4EHEyRis&sig=yIaUDAbQ3RfPvLTfEE7-thpEXys&hl=de&sa=X&ved=0ahUKEwiyp-XntdnLAhWipnIKHab5CaA4ChDoAQhfMAg#v=onepage&q=meta-analysis%20convert%20chi2%20to%20d%20degrees%20of%20freedom&f=false
BIG[indices_pdirect_df_exists, N.APPROX] <- BIG[indices_pdirect_df_exists, DF1]+2
d <- (qnorm(1-(BIG[indices_pdirect_df_exists, STAT]/2))*2)/sqrt(BIG[indices_pdirect_df_exists, N.APPROX])
BIG[indices_pdirect_df_exists, D] <- d * BIG[indices_pdirect_df_exists, SIGN]
BIG[indices_pdirect_df_exists, G] <- BIG[indices_pdirect_df_exists, D] * (1 - (3 / (4 * BIG[indices_pdirect_df_exists, N.APPROX] - 1)))
}
}
# store significance (computed p-value must be less than (un)specified critical value)
BIG[, SIGNIFICANT] <- BIG[, P.VALUE] < BIG[, CRIT.VALUE]
# store p-value one-tailed by dividing p-value in half
BIG[, P.VALUE.ONE] <- BIG[, P.VALUE] / 2
# "actual p-value" must be in accordance to one-tailed specification
BIG[, P.ACTUAL] <- BIG[, P.VALUE]
BIG[indices_one_tailed, P.ACTUAL] <- BIG[indices_one_tailed, P.VALUE.ONE]
# init error
#BIG[, P.REPORTED.ERROR] <- rep(0, nlines)
#BIG[, P.REPORTED.ERROR.DIRECTION] <- rep(0, nlines)
# check all "p < ?" specifications for reporting errors
if(length(indices_p_lt)){
BIG[indices_p_lt, P.REPORTED.ERROR] <- BIG[indices_p_lt, P.ACTUAL] >= BIG[indices_p_lt, P.REPORTED]
BIG[indices_p_lt, P.REPORTED.ERROR.DIRECTION] <- -BIG[indices_p_lt, P.REPORTED.ERROR]
}
# check all "p <= ?" specifications for reporting errors
if(length(indices_p_leq)) {
BIG[indices_p_leq, P.REPORTED.ERROR] <- BIG[indices_p_leq, P.ACTUAL] > BIG[indices_p_leq, P.REPORTED]
BIG[indices_p_leq, P.REPORTED.ERROR.DIRECTION] <- -BIG[indices_p_leq, P.REPORTED.ERROR]
}
# check all "p > ?" specifications for reporting errors
if(length(indices_p_gt)){
BIG[indices_p_gt, P.REPORTED.ERROR] <- BIG[indices_p_gt, P.ACTUAL] <= BIG[indices_p_gt, P.REPORTED]
BIG[indices_p_gt, P.REPORTED.ERROR.DIRECTION] <- BIG[indices_p_gt, P.REPORTED.ERROR]
}
# check all "p = ?" specifications for reporting errors
if(length(indices_p_eq)){
difference <- BIG[indices_p_eq, P.REPORTED] - round(BIG[indices_p_eq, P.ACTUAL], BIG[indices_p_eq, P.REPORTED.DECS])
BIG[indices_p_eq, P.REPORTED.ERROR.DIRECTION] <- sign(difference)
BIG[indices_p_eq, P.REPORTED.ERROR] <- difference != 0
}
# check d
indices_cohens_d2 <- which(!is.na(BIG[, D]) & !is.na(BIG[, D.REPORTED]))
if(length(indices_cohens_d2)) {
difference <- BIG[indices_cohens_d2, D.REPORTED] - round(BIG[indices_cohens_d2, D], BIG[indices_cohens_d2, D.REPORTED.DECS])
BIG[indices_cohens_d2, D.REPORTED.ERROR.DIRECTION] <- sign(difference)
BIG[indices_cohens_d2, D.REPORTED.ERROR] <- difference != 0
}
# ---------------------------------------------------------------------
# Bring errors into a nice shape
# find indices of lines with and without error
has_no_error <- stri_isempty(errors)
indices_no_error <- which(has_no_error)
indices_error <- which(!has_no_error)
# produce error message
ERRORS <- NULL
if(length(indices_error)) {
ERRORS <- matrix(
c(
as.character(indices_not_empty[indices_error]),
txt.lines[indices_error],
errors[indices_error]
),
ncol=3
)
}
# ---------------------------------------------------------------------
# Bring warnings into a nice shape
# find indices of lines with and without error
has_no_warning <- stri_isempty(warning)
indices_no_warning <- which(has_no_warning)
indices_warning <- which(!has_no_warning)
# produce warning message
WARNINGS <- NULL
if(length(indices_warning)) {
WARNINGS <- matrix(
c(
as.character(indices_not_empty[indices_warning]),
txt.lines[indices_warning],
warning[indices_warning]
),
ncol=3
)
}
p.reported.error.direction <- c("smaller", "", "", "bigger")[match(BIG[,P.REPORTED.ERROR.DIRECTION], c(-1,0,NA,1))]
d.reported.error.direction <- c("smaller", "", "", "bigger")[match(BIG[,D.REPORTED.ERROR.DIRECTION], c(-1,0,NA,1))]
global.reporting.error <- is.one(BIG[,P.REPORTED.ERROR]) | is.one(BIG[,D.REPORTED.ERROR])
# convert data to data.frame as return value
res <- data.frame(
line = indices_not_empty,
paper_id = PAPER_ID,
study_id = STUDY_ID,
focal = as.logical(BIG[,IS.FOCAL]),
type = type.factor,
df1 = BIG[,DF1],
df2 = BIG[,DF2],
d = BIG[,D],
g = BIG[,G],
n.approx = BIG[,N.APPROX],
statistic = BIG[,STAT],
p.value = BIG[,P.VALUE],
p.value.one = BIG[,P.VALUE.ONE],
p.reported = p.reported.str,
p.crit = BIG[,CRIT.VALUE],
significant = as.logical(BIG[,SIGNIFICANT]),
one.tailed = as.logical(BIG[,ONE.TAILED]),
reporting.error = as.logical(BIG[,P.REPORTED.ERROR]),
error.direction = p.reported.error.direction,
parse.error = !has_no_error,
d.reported = BIG[,D.REPORTED],
d.reported.str = d.reported.str,
d.reported.lower = BIG[,D.REPORTED.LOWER],
d.reported.upper = BIG[,D.REPORTED.UPPER],
d.reported.error = as.logical(BIG[,D.REPORTED.ERROR]),
d.reported.error.direction = d.reported.error.direction,
global.reporting.error = global.reporting.error,
p.value.log = BIG[,P.VALUE.LOG],
d.var = BIG[, D.VAR],
d.se = sqrt(BIG[, D.VAR]),
studydesign = BIG[, STUDYDESIGN],
stringsAsFactors = FALSE
)
# add attribute warnings to object "res"
attr(res, 'ERRORS') <- ERRORS
attr(res, 'WARNINGS') <- WARNINGS
# return data.frame
return(res)
}
parse_ES("t")
#
# parse_ES("t(72) = 4.80; BS
# t(72) = 4.80; WS
# t(72) = 5.80; WS")
#
# (p <- parse_ES("t(47, 4)=2.1"))
# (p <- parse_ES("t(47, 4)=2.1; BS"))
# (p <- parse_ES("t(47, 4)=2.1; WS"))
#
# (p <- parse_ES("F(1, 47)=4.41"))
# (p <- parse_ES("F(1, 47)=4.41; BS"))
# (p <- parse_ES("F(1, 47)=4.41; WS"))