-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmulti_flips.py
292 lines (234 loc) · 9.62 KB
/
multi_flips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import multiprocessing
from quadcopter_model import Quadcopter
from plotter import PlotFlight
import numpy as np
import random
import time
from deap import base, creator, tools, algorithms, cma
import argparse
from matplotlib import pyplot
TURNS = 3
class PlotCMAES(object):
graph_lengths = [9, 5, 9, 9]
titles = [
'Std Deviation - fitness (NGEN)',
'Parameters (NGEN)',
'Fitness (Current Gen)',
'Fitness (NGEN)'
]
xlabel = ['No. Generations', 'No. Generations', 'No. Children', 'No. Generations']
labels = [
['x', 'y', 'z', 'xdot', 'ydot', 'zdot', 'phi', 'theta', 'psi'],
['Facc', 'Tacc', 'Tcoa', 'Frec', 'Trec']
]
markers = [
['-', '-', '-', '--', '--', '--', '-.', '-.', '-.'],
['-', '-.', '-', '-.', '-']
]
def __init__(self, ngen, children):
self.fig, self.axis_arr = pyplot.subplots(2, 2)
self.axis_arr = self.axis_arr.flatten()
self.lines = [[] for _ in xrange(4)]
for i, length in enumerate(self.graph_lengths):
label = self.labels[1] if i == 1 else self.labels[0]
marker = self.markers[1] if i == 1 else self.markers[0]
for j in xrange(length):
self.lines[i].append(self.axis_arr[i].plot([], [],
label=label[j],
linewidth=3,
linestyle=marker[j])[0])
for i, axis in enumerate(self.axis_arr):
axis.grid(True)
axis.set_title(self.titles[i])
axis.set_xlabel(self.xlabel[i])
axis.legend(loc='upper right')
self.axis_arr[0].set_yscale('symlog')
self.axis_arr[2].set_yscale('symlog')
self.axis_arr[3].set_yscale('symlog')
for i in [0, 1, 3]:
self.axis_arr[i].set_autoscaley_on(True)
self.axis_arr[i].set_xlim(0, ngen)
self.axis_arr[2].set_autoscaley_on(True)
self.axis_arr[2].set_xlim(0, children)
pyplot.grid(True)
pyplot.ion()
pyplot.show()
def update(self, plot1, plot2, plot3, plot4):
data = [plot1, plot2, plot3, plot4]
xlen = [plot1.shape[0], len(plot2), plot3.shape[0], plot1.shape[0]]
for i in xrange(4):
# print 'I', i, xlen
# print data[i]
for line, y in zip(self.lines[i], data[i].T):
line.set_ydata(y)
line.set_xdata(range(xlen[i]))
for i in xrange(4):
self.axis_arr[i].relim()
self.axis_arr[i].autoscale_view()
self.fig.canvas.draw()
self.fig.canvas.flush_events()
class MultiFlipParams(object):
"""Generates the parameters for CMA-ES according to the paper."""
def __init__(self):
self.mass = 0.468
self.Ixx = 0.0023
self.length = 0.17
self.Bup = 21.58
self.Bdown = 3.92
self.Cpmax = np.pi * 1800/180
self.Cn = TURNS
self.gravity = 9.806
def get_acceleration(self, p0, p3):
"""Compute the acceleration from the generated parameters."""
ap = {
'acc': (-self.mass * self.length * (self.Bup - p0) / (4 * self.Ixx)),
'start': (self.mass * self.length * (self.Bup - self.Bdown) / (4 * self.Ixx)),
'coast': 0,
'stop': (-self.mass * self.length * (self.Bup - self.Bdown) / (4 * self.Ixx)),
'recover': (self.mass * self.length * (self.Bup - p3) / (4 * self.Ixx)),
}
return ap
def get_initial_parameters(self):
"""Initial parameters."""
p0 = p3 = 0.9 * self.Bup
p1 = p4 = 0.1
acc_start = self.get_acceleration(p0, p3)['start']
p2 = (2 * np.pi * self.Cn / self.Cpmax) - (self.Cpmax / acc_start)
return [p0, p1, p2, p3, p4]
def get_sections(self, parameters):
"""Compute the 5 regions of the flight as defined in the paper."""
sections = np.zeros(5, dtype='object')
[p0, p1, p2, p3, p4] = parameters
ap = self.get_acceleration(p0, p3)
T2 = (self.Cpmax - p1 * ap['acc']) / ap['start']
T4 = -(self.Cpmax + p4 * ap['recover']) / ap['stop']
aq = 0
ar = 0
# 1. Accelerate
sections[0] = (self.mass * p0, [ap['acc'], aq, ar], p1)
temp = self.mass * self.Bup - 2 * abs(ap['start']) * self.Ixx / self.length
sections[1] = (temp, [ap['start'], aq, ar], T2)
sections[2] = (self.mass * self.Bdown, [ap['coast'], aq, ar], p2)
temp = self.mass * self.Bup - 2 * abs(ap['stop']) * self.Ixx / self.length
sections[3] = (temp, [ap['stop'], aq, ar], T4)
sections[4] = (self.mass * p3, [ap['recover'], aq, ar], p4)
return sections
ideal_final_state = np.array([0, 0, 0, 0, 0, 0, 2 * np.pi * TURNS, 0, 0])
def cmaes_evaluate(params):
"""5 dimensional variables[p0 ..... p5]"""
gen = MultiFlipParams()
quad = Quadcopter(False)
# print("cmaes_evaluate")
# Restrict duration of generated params to below 2 seconds
if (params[1] > 2.5) or (params[2] > 2.5) or (params[4] > 2.5):
return tuple([1000000] * 9)
sections = gen.get_sections(params)
for sect in sections:
if sect[2] < 0:
# print('Error sect:', sect)
return tuple([1000000] * 9)
quad.update_state(sections)
final_state = np.array([quad.state['position'],
quad.state['velocity'],
quad.state['orientation']]).flatten()
fitness = abs(ideal_final_state - final_state)
# print("[", params, "] -> [", fitness, "]")
return tuple(fitness)
def fly_quadrotor(params=None, fly=True):
gen = MultiFlipParams()
quad = Quadcopter()
if not params:
params = gen.get_initial_parameters()
sections = gen.get_sections(params)
state = quad.update_state(sections)
if fly:
PlotFlight(state, 0.17).show()
return state
def run_cmaes():
# search_space_dims = 5
NGEN = 1000
CHILD = 6
SIGMA = 1
verbose = True
gen = MultiFlipParams()
cmplot = PlotCMAES(NGEN, CHILD)
random.seed()
best_params = np.ndarray((NGEN, 5))
best_fitness = np.ndarray((NGEN, 9))
print('Init params:', gen.get_initial_parameters())
# The fitness function should minimize all the 9 variables
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, -1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMin)
pool = multiprocessing.Pool(3)
toolbox = base.Toolbox()
toolbox.register("evaluate", cmaes_evaluate)
toolbox.register("map", pool.map)
cma_es = cma.Strategy(centroid=gen.get_initial_parameters(), sigma=SIGMA, lambda_=CHILD)
toolbox.register("generate", cma_es.generate, creator.Individual)
toolbox.register("update", cma_es.update)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
# stats.register("avg", np.mean, axis=0)
stats.register("std", np.std, axis=0)
stats.register("min", np.min, axis=0)
stats.register("max", np.max, axis=0)
start = time.time()
# Since we are doing addtional work like plotting, implement the
# algorithm.eaGenerateUpdate part yourself
logbook = tools.Logbook()
# logbook.header = ['gen'] + stats.fields
logbook.header = ['gen']
for gen in range(NGEN):
population = toolbox.generate()
fitnesses = toolbox.map(toolbox.evaluate, population)
for ind, fit in zip(population, fitnesses):
ind.fitness.values = fit
toolbox.update(population)
hof.update(population)
record = stats.compile(population)
logbook.record(evals=len(population), gen=gen, **record)
if verbose:
print(logbook.stream)
plot1 = np.asarray(logbook.select("std"))
# Holds the best parameter set for each generation
best_params[gen] = hof[0]
# Fitness of current population
plot3 = np.asarray([ind.fitness.values for ind in population])
# Fitness of best population over all generations
best_fitness[gen] = hof[0].fitness.values
cmplot.update(plot1, best_params[:gen+1], plot3, best_fitness[:gen+1])
print("Best individual is %s, fitness: %s" % (hof[0], hof[0].fitness.values))
print("Elapsed %s minutes" % ((time.time() - start)/60.0))
pyplot.show(True)
# Fly the quadrotor with generated params
fly_quadrotor(hof[0])
pyplot.show(True)
def load_data(f):
data = f.readline().strip().strip("[]").split(",")
return [float(i) for i in data]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Quadcopter multiflips")
parser.add_argument("-f", nargs="?", type=argparse.FileType('r'),
help="Parameters file to generate output")
group = parser.add_mutually_exclusive_group()
group.add_argument("--fly", action='store_true',
help="Plot the flight")
group.add_argument("--cmaes", action='store_true',
help="Run cmaes optimization")
group.add_argument("--blender", action='store_true',
help="Generate data for blender")
args = parser.parse_args()
params = None
if args.f:
params = load_data(args.f)
if params and len(params) != 5:
params = None
if args.fly:
fly_quadrotor(params)
if args.cmaes:
run_cmaes()
if args.blender:
state = fly_quadrotor(params, fly=False)
np.save("quadata", state)
print("Output save to quadata.npy")