diff --git a/sahi/scripts/coco_evaluation.py b/sahi/scripts/coco_evaluation.py index eb5de733d..d2648c245 100644 --- a/sahi/scripts/coco_evaluation.py +++ b/sahi/scripts/coco_evaluation.py @@ -142,7 +142,9 @@ def evaluate_coco( cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = cat_ids cocoEval.params.maxDets = list(proposal_nums) - cocoEval.params.iouThrs = [iou_thrs] if not isinstance(iou_thrs, list) else iou_thrs + cocoEval.params.iouThrs = ( + [iou_thrs] if not isinstance(iou_thrs, list) and not isinstance(iou_thrs, np.ndarray) else iou_thrs + ) # mapping of cocoEval.stats coco_metric_names = { "mAP": 0, @@ -331,17 +333,17 @@ def evaluate_coco( def main( dataset_json_path: str, result_json_path: str, - out_dir: str, + out_dir: str = None, type: str = "bbox", classwise: bool = False, - proposal_nums: List[int] = [1024, 9216, 10000000000], + proposal_nums: List[int] = [10, 100, 500], iou_thrs: Union[List[float], float] = None, ): """ Args: dataset_json_path (str): file path for the coco dataset json file result_json_path (str): file path for the coco result json file - out_dir (str): dir to save analyze result images + out_dir (str): dir to save eval result type (bool): 'bbox' or 'mask' classwise (bool): whether to evaluate the AP for each class proposal_nums (List[int]): Proposal number used for evaluating recalls, such as recall@100, recall@500