-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest_pcn.py
108 lines (87 loc) · 4.14 KB
/
test_pcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import logging
import os
import sys
import importlib
import argparse
import munch
import yaml
from utils.train_utils import *
from dataset import PCN_pcd
import h5py
def save_h5(data, path):
f = h5py.File(path, 'w')
a = data.data.cpu().numpy()
f.create_dataset('data', data=a)
f.close()
def save_obj(point, path):
n = point.shape[0]
with open(path, 'w') as f:
for i in range(n):
f.write("v {0} {1} {2}\n".format(point[i][0],point[i][1],point[i][2]))
f.close()
def test():
dataset_test = PCN_pcd(args.pcnpath, prefix="test")
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=args.batch_size,
shuffle=False, num_workers=int(args.workers))
dataset_length = len(dataset_test)
logging.info('Length of test dataset:%d', len(dataset_test))
# load model
model_module = importlib.import_module('.%s' % args.model_name, 'models')
net = torch.nn.DataParallel(model_module.Model(args))
net.cuda()
net.module.load_state_dict(torch.load(args.load_model)['net_state_dict'])
logging.info("%s's previous weights loaded." % args.model_name)
net.eval()
metrics = ['cd_p', 'cd_t', 'cd_t_coarse', 'cd_p_coarse']
test_loss_meters = {m: AverageValueMeter() for m in metrics}
test_loss_cat = torch.zeros([8, 4], dtype=torch.float32).cuda()
cat_num = torch.ones([8, 1], dtype=torch.float32).cuda() * 150
cat_name = ['airplane', 'cabinet', 'car', 'chair', 'lamp', 'sofa', 'table', 'watercraft']
logging.info('Testing...')
with torch.no_grad():
for i, data in enumerate(dataloader_test):
label, inputs_cpu, gt_cpu, obj = data
inputs = inputs_cpu.float().cuda()
gt = gt_cpu.float().cuda()
inputs = inputs.transpose(2, 1).contiguous()
result_dict = net(inputs, gt, is_training=False)
for k, v in test_loss_meters.items():
v.update(result_dict[k].mean().item())
for j, l in enumerate(label):
for ind, m in enumerate(metrics):
test_loss_cat[int(l), ind] += result_dict[m][int(j)]
if i % args.step_interval_to_print == 0:
logging.info('test [%d/%d]' % (i, dataset_length / args.batch_size))
if args.save_vis:
for j in range(args.batch_size):
if not os.path.isdir(os.path.join(os.path.dirname(args.load_model), 'all', str(label[j]))):
os.makedirs(os.path.join(os.path.dirname(args.load_model), 'all', str(label[j])))
path = os.path.join(os.path.dirname(args.load_model), 'all', str(label[j]), str(obj[j])+'.obj')
save_obj(result_dict['out2'][j], path)
logging.info('Loss per category:')
category_log = ''
for i in range(8):
category_log += '\ncategory name: %s' % (cat_name[i])
for ind, m in enumerate(metrics):
scale_factor = 1 if m == 'f1' else 10000
category_log += ' %s: %f' % (m, test_loss_cat[i, ind] / cat_num[i] * scale_factor)
logging.info(category_log)
logging.info('Overview results:')
overview_log = ''
for metric, meter in test_loss_meters.items():
overview_log += '%s: %f ' % (metric, meter.avg)
logging.info(overview_log)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Test config file')
parser.add_argument('-c', '--config', help='path to config file', required=True)
arg = parser.parse_args()
config_path = os.path.join('./cfgs',arg.config)
args = munch.munchify(yaml.safe_load(open(config_path)))
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
if not args.load_model:
raise ValueError('Model path must be provided to load model!')
exp_name = os.path.basename(args.load_model)
log_dir = os.path.dirname(args.load_model)
logging.basicConfig(level=logging.INFO, handlers=[logging.FileHandler(os.path.join(log_dir, 'test.log')),
logging.StreamHandler(sys.stdout)])
test()