-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhrtf.py
76 lines (63 loc) · 2.73 KB
/
hrtf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from pathlib import Path
from scipy.io import wavfile
import numpy as np
"""
KEMAR is 1.4 meters away from the microphones
elevation [-90, 90], 90 vertical up
azimuth [0 - 360], 90 right
x: medio-lateral right positive
y: antero-posterior front positive
z: dorso-ventral up positive
"""
RADIUS = 1.4
class HRTF:
def __init__(self, path_transfer):
"""
HRTF(path_transfer_functions)
self.azimuth
self.elevation
self.waveform: left and right transfer functions
"""
self.path = Path(path_transfer)
self.files = sorted([f for f in self.path.rglob('*.wav')
if f.parts[-2].startswith('elev') and f.name.startswith('L')])
self.azimuth = np.zeros(len(self.files))
self.elevation = np.zeros(len(self.files))
self.radius = np.zeros(len(self.files)) + RADIUS
self.waveform = np.zeros((len(self.files), 2, 512), np.int16)
for i, file_left in enumerate(self.files):
n = file_left.name
file_right = file_left.parent.joinpath(f'R{file_left.name[1:]}')
self.elevation[i] = np.float(n[1:n.find('e')])
self.azimuth[i] = np.float(n[n.find('e') + 1:n.find('a')])
_, self.waveform[i, 0, :] = wavfile.read(file_left)
_, self.waveform[i, 1, :] = wavfile.read(file_right)
self.x, self.y, self.z = sph2cart(self.radius, self.elevation, self.azimuth)
# normalize waveforms by their rms - need to cast to float for doing so
rms = np.sqrt(np.sum(np.single(self.waveform) ** 2, axis=2))
self.waveform = (self.waveform.T / rms.T).T
def get_hrtf(self, r, elevation, azimuth):
"""
Finds the closest transfer function according to the direction
Scales the amplitude using spherical divergence
"""
x, y, z = sph2cart(RADIUS, elevation, azimuth)
return self.get_hrtf_cart(x, y, z)
def get_hrtf_cart(self, x, y, z):
"""
Finds the closest transfer function according to the direction
Scales the amplitude using spherical divergence
"""
r = np.sqrt(x ** 2 + y ** 2 + z ** 2)
wind = np.argmin(np.sqrt((x - self.x) ** 2 + (y - self.y) ** 2 + (z - self.z) ** 2))
return self.waveform[wind, :, :] / np.sqrt(r)
def sph2cart(r, elevation, azimuth):
y = r * np.cos(elevation / 180 * np.pi) * np.cos(azimuth / 180 * np.pi)
x = r * np.cos(elevation / 180 * np.pi) * np.sin(azimuth / 180 * np.pi)
z = r * np.sin(elevation / 180 * np.pi)
return x, y, z
def cart2sph(x, y, z):
azimuth = np.arctan2(x, y) * 180 / np.pi
elevation = np.arctan2(z, np.sqrt(x ** 2 + y ** 2)) * 180 / np.pi
r = np.sqrt(x ** 2 + y ** 2 + z ** 2)
return r, elevation, azimuth