This repository has been archived by the owner on Oct 31, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
118 lines (89 loc) · 2.46 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import cv2
import random
import numpy as np
import set_solver as s
def show(img, window_name='main'):
# destroy existing window
destroy(window_name)
# show it
cv2.imshow(window_name, s.resize_image(img, 600))
# wait for key, then destroy it
cv2.waitKey(0)
destroy(window_name)
return window_name
def destroy(window_name):
cv2.destroyWindow(window_name)
# (Stolen) utility code from
# http://git.io/vGi60A
def rectify(h):
try:
h = h.reshape((4, 2))
except ValueError:
return np.array([None])
hnew = np.zeros((4, 2), dtype=np.float32)
add = h.sum(1)
hnew[0] = h[np.argmin(add)]
hnew[2] = h[np.argmax(add)]
diff = np.diff(h, axis=1)
hnew[1] = h[np.argmin(diff)]
hnew[3] = h[np.argmax(diff)]
return hnew
# draw contour on empty image
def draw_contour(c, i, h=500, w=300):
dest = np.zeros((h, w), np.float32)
cv2.drawContours(dest, c, i, 255, cv2.FILLED)
return dest
def resize(src, shape):
dest = cv2.resize(src, (shape[1], shape[0]))
return dest
# get grayscale and slightly blurred image to remove noise
def preprocess(img):
# grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gaussian blur to remove noise
blur = cv2.GaussianBlur(gray, ksize=(5, 5), sigmaX=0)
return blur
# inspired by
# http://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
def random_color_palette(n, bgr=True):
"""Generates a random, aesthetically pleasing set of n colors
(list of BGR tuples - because opencv is silly - if BGR; else HSV) """
random.seed(4242)
SATURATION = 0.6
VALUE = 0.95
GOLDEN_RATIO_INVERSE = 0.618033988749895
# see: https://en.wikipedia.org/wiki/HSL_and_HSV#Converting_to_RGB
def hsv2bgr(hsv):
h, s, v = hsv
# compute chroma
c = v * s
h_prime = h * 6.0
x = c * (1 - abs(h_prime % 2 - 1))
if h_prime >= 5:
rgb = (c, 0, x)
elif h_prime >= 4:
rgb = (x, 0, c)
elif h_prime >= 3:
rgb = (0, x, c)
elif h_prime >= 2:
rgb = (0, c, x)
elif h_prime >= 1:
rgb = (x, c, 0)
else:
rgb = (c, x, 0)
m = v - c
rgb = tuple(255.0 * (val + m) for val in rgb)
# flip tuple to return (B,G,R)
return rgb[::-1]
# random float in [0.0, 1.0)
hue = random.random()
l_hues = [hue]
for i in xrange(n - 1):
# generate evenly distributed hues by random walk using the golden ratio!
# (mod 1, to stay within hue space)
hue += GOLDEN_RATIO_INVERSE
hue %= 1
l_hues.append(hue)
if not bgr:
return [(h, SATURATION, VALUE) for h in l_hues]
return [hsv2bgr((h, SATURATION, VALUE)) for h in l_hues]