diff --git a/README.md b/README.md index 225a66d..945b2a8 100644 --- a/README.md +++ b/README.md @@ -12,6 +12,10 @@ Datum provides APIs to create tfrecord daatsets and read tfrecord as `tf.data.Da TFRecord enables efficient handling of small or large datasets. Samples of datasets are stored in serialized binary string format. The purpose of this library to make it easier for end-user to create and read tfrecord datasets effortlessly. +### Example notebooks on Google Colab + +1. Image Classification: [Transfer learning using Datum and Keras](https://colab.research.google.com/drive/1_r34J0MgdC7yCIVtH_EV0ne5q2y6EaH9?usp=sharing). +2. Text Classification: [BERT based text classofocation using Datum and Tensorflow Text](https://colab.research.google.com/drive/1D5U6NvioF-T8Nhvzzkuskw85Ki1yGR6K?usp=sharing). ## Getting Started @@ -41,12 +45,6 @@ lazydocs datum --output-path docs/api-docs --overview-file README.md mkdocs serve ``` -### Example notebooks on Google Colab - -1. Image Classification: [Transfer learning using Datum and Keras](https://colab.research.google.com/drive/1_r34J0MgdC7yCIVtH_EV0ne5q2y6EaH9?usp=sharing). -2. Text Classification: [BERT based text classofocation using Datum and Tensorflow Text](https://colab.research.google.com/drive/1D5U6NvioF-T8Nhvzzkuskw85Ki1yGR6K?usp=sharing). - - ### Create tfeecord dataset Dataset can be created by using the following command ```Shell