Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Use gpu to accelerate error reporting #86

Open
1 task done
lzk821 opened this issue Dec 9, 2023 · 0 comments
Open
1 task done

[Bug]: Use gpu to accelerate error reporting #86

lzk821 opened this issue Dec 9, 2023 · 0 comments

Comments

@lzk821
Copy link

lzk821 commented Dec 9, 2023

Is there an existing issue for this?

  • I have searched the existing issues and checked the recent builds/commits

What happened?

BackendCompilerFailed: openvino_fx raised RuntimeError: ShapeProp error for: node=%self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {}) with meta={'nn_module_stack': {'self_norm1': <class 'torch.nn.modules.normalization.GroupNorm'>}, 'stack_trace': ' File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\resnet.py", line 691, in forward\n hidden_states = self.norm1(hidden_states)\n'} While executing %self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {}) Original traceback: File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\resnet.py", line 691, in forward hidden_states = self.norm1(hidden_states) Set torch._dynamo.config.verbose=True for more information You can suppress this exception and fall back to eager by setting: torch._dynamo.config.suppress_errors = True
Time taken: 6.5 sec.

Steps to reproduce the problem

  1. Go to ....
  2. Press ....
  3. ...

What should have happened?

Pictures can be produced normally

Sysinfo

venv "D:\system\Documents\SD\stable-diffusion-webui\venv\Scripts\Python.exe"
fatal: No names found, cannot describe anything.
Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)]
Version: 1.6.0
Commit hash: 4400629
Launching Web UI with arguments: --skip-torch-cuda-test --precision full --no-half
no module 'xformers'. Processing without...
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.
Warning: caught exception 'Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx', memory monitor disabled
Loading weights [6ce0161689] from D:\system\Documents\SD\stable-diffusion-webui\models\Stable-diffusion\v1-5-pruned-emaonly.safetensors
Running on local URL: http://127.0.0.1:7860

To create a public link, set share=True in launch().
Creating model from config: D:\system\Documents\SD\stable-diffusion-webui\configs\v1-inference.yaml
Startup time: 10.6s (prepare environment: 0.4s, import torch: 3.6s, import gradio: 1.1s, setup paths: 1.0s, initialize shared: 0.5s, other imports: 0.7s, setup codeformer: 0.1s, load scripts: 2.4s, create ui: 0.4s, gradio launch: 0.4s).
Applying attention optimization: InvokeAI... done.
Model loaded in 3.5s (load weights from disk: 0.6s, create model: 0.3s, apply weights to model: 2.4s, calculate empty prompt: 0.1s).
{}
Loading weights [6ce0161689] from D:\system\Documents\SD\stable-diffusion-webui\models\Stable-diffusion\v1-5-pruned-emaonly.safetensors
OpenVINO Script: created model from config : D:\system\Documents\SD\stable-diffusion-webui\configs\v1-inference.yaml
0%| | 0/20 [00:00<?, ?it/s][2023-12-09 18:52:21,913] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,260] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,295] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,326] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,504] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,562] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,601] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,821] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,858] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py <function Conv2d.forward at 0x000001EF7F8DD900> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:23,059] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:23,115] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
list index out of range
Traceback (most recent call last):
File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 200, in openvino_fx
compiled_model = openvino_compile_cached_model(maybe_fs_cached_name, *example_inputs)
File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 426, in openvino_compile_cached_model
om.inputs[idx].get_node().set_element_type(dtype_mapping[input_data.dtype])
IndexError: list index out of range

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 147, in run_node
result = super().run_node(n)
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 177, in run_node
return getattr(self, n.op)(n.target, args, kwargs)
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 294, in call_module
return submod(*args, **kwargs)
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\system\Documents\SD\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 459, in network_GroupNorm_forward
return originals.GroupNorm_forward(self, input)
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\normalization.py", line 273, in forward
return F.group_norm(
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2526, in group_norm
return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps)
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\overrides.py", line 1534, in handle_torch_function
result = mode.torch_function(public_api, types, args, kwargs)
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch_inductor\overrides.py", line 38, in torch_function
return func(*args, **kwargs)
File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2530, in group_norm
return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: Expected weight to be a vector of size equal to the number of channels in input, but got weight of shape [320] and input of shape [2, 1280]
0%| | 0/20 [00:01<?, ?it/s]
*** Error completing request
*** Arguments: ('task(av52dfc5c5rmdah)', 'tree', '', [], 20, 'DPM++ 2M Karras', 1, 1, 7, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', '', '', [], <gradio.routes.Request object at 0x000001EF3F382B00>, 1, False, '', 0.8, -1, False, -1, 0, 0, 0, 'None', 'None', 'CPU', True, 'Euler a', True, False, 'None', 0.8, False, False, 'positive', 'comma', 0, False, False, '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, False) {}
Traceback (most recent call last):
File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 200, in openvino_fx
compiled_model = openvino_compile_cached_model(maybe_fs_cached_name, *example_inputs)
File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 426, in openvino_compile_cached_model
om.inputs[idx].get_node().set_element_type(dtype_mapping[input_data.dtype])
IndexError: list index out of range

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 147, in run_node
    result = super().run_node(n)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 177, in run_node
    return getattr(self, n.op)(n.target, args, kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 294, in call_module
    return submod(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 459, in network_GroupNorm_forward
    return originals.GroupNorm_forward(self, input)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\normalization.py", line 273, in forward
    return F.group_norm(
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2526, in group_norm
    return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\overrides.py", line 1534, in handle_torch_function
    result = mode.__torch_function__(public_api, types, args, kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\overrides.py", line 38, in __torch_function__
    return func(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2530, in group_norm
    return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: Expected weight to be a vector of size equal to the number of channels in input, but got weight of shape [320] and input of shape [2, 1280]

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 670, in call_user_compiler
    compiled_fn = compiler_fn(gm, self.fake_example_inputs())
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\debug_utils.py", line 1055, in debug_wrapper
    compiled_gm = compiler_fn(gm, example_inputs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\backends\common.py", line 107, in wrapper
    return fn(model, inputs, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 233, in openvino_fx
    return compile_fx(subgraph, example_inputs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\compile_fx.py", line 415, in compile_fx
    model_ = overrides.fuse_fx(model_, example_inputs_)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\overrides.py", line 96, in fuse_fx
    gm = mkldnn_fuse_fx(gm, example_inputs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\mkldnn.py", line 509, in mkldnn_fuse_fx
    ShapeProp(gm, fake_mode=fake_mode).propagate(*example_inputs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 185, in propagate
    return super().run(*args)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 136, in run
    self.env[node] = self.run_node(node)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 152, in run_node
    raise RuntimeError(
RuntimeError: ShapeProp error for: node=%self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {}) with meta={'nn_module_stack': {'self_norm1': <class 'torch.nn.modules.normalization.GroupNorm'>}, 'stack_trace': '  File "D:\\system\\Documents\\SD\\stable-diffusion-webui\\venv\\lib\\site-packages\\diffusers\\models\\resnet.py", line 691, in forward\n    hidden_states = self.norm1(hidden_states)\n'}

While executing %self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {})
Original traceback:
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\resnet.py", line 691, in forward
    hidden_states = self.norm1(hidden_states)


The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "D:\system\Documents\SD\stable-diffusion-webui\modules\call_queue.py", line 57, in f
    res = list(func(*args, **kwargs))
  File "D:\system\Documents\SD\stable-diffusion-webui\modules\call_queue.py", line 36, in f
    res = func(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\modules\txt2img.py", line 52, in txt2img
    processed = modules.scripts.scripts_txt2img.run(p, *args)
  File "D:\system\Documents\SD\stable-diffusion-webui\modules\scripts.py", line 601, in run
    processed = script.run(p, *script_args)
  File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 1228, in run
    processed = process_images_openvino(p, model_config, vae_ckpt, p.sampler_name, enable_caching, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac)
  File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 979, in process_images_openvino
    output = shared.sd_diffusers_model(
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stable_diffusion.py", line 840, in __call__
    noise_pred = self.unet(
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\eval_frame.py", line 82, in forward
    return self.dynamo_ctx(self._orig_mod.forward)(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\eval_frame.py", line 209, in _fn
    return fn(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 924, in forward
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 1066, in <graph break in forward>
    sample, res_samples = downsample_block(
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_blocks.py", line 1159, in forward
    hidden_states = resnet(hidden_states, temb, scale=lora_scale)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\eval_frame.py", line 337, in catch_errors
    return callback(frame, cache_size, hooks)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 404, in _convert_frame
    result = inner_convert(frame, cache_size, hooks)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 104, in _fn
    return fn(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 262, in _convert_frame_assert
    return _compile(
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\utils.py", line 163, in time_wrapper
    r = func(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 324, in _compile
    out_code = transform_code_object(code, transform)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\bytecode_transformation.py", line 445, in transform_code_object
    transformations(instructions, code_options)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 311, in transform
    tracer.run()
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 1726, in run
    super().run()
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 576, in run
    and self.step()
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 540, in step
    getattr(self, inst.opname)(inst)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 372, in wrapper
    self.output.compile_subgraph(self, reason=reason)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 541, in compile_subgraph
    self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 588, in compile_and_call_fx_graph
    compiled_fn = self.call_user_compiler(gm)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\utils.py", line 163, in time_wrapper
    r = func(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 675, in call_user_compiler
    raise BackendCompilerFailed(self.compiler_fn, e) from e
torch._dynamo.exc.BackendCompilerFailed: openvino_fx raised RuntimeError: ShapeProp error for: node=%self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {}) with meta={'nn_module_stack': {'self_norm1': <class 'torch.nn.modules.normalization.GroupNorm'>}, 'stack_trace': '  File "D:\\system\\Documents\\SD\\stable-diffusion-webui\\venv\\lib\\site-packages\\diffusers\\models\\resnet.py", line 691, in forward\n    hidden_states = self.norm1(hidden_states)\n'}

While executing %self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {})
Original traceback:
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\resnet.py", line 691, in forward
    hidden_states = self.norm1(hidden_states)


Set torch._dynamo.config.verbose=True for more information


You can suppress this exception and fall back to eager by setting:
    torch._dynamo.config.suppress_errors = True

What browsers do you use to access the UI ?

Google Chrome

Console logs

venv "D:\system\Documents\SD\stable-diffusion-webui\venv\Scripts\Python.exe"
fatal: No names found, cannot describe anything.
Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug  1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)]
Version: 1.6.0
Commit hash: 44006297e03a07f28505d54d6ba5fd55e0c1292d
Launching Web UI with arguments: --skip-torch-cuda-test --precision full --no-half
no module 'xformers'. Processing without...
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.
Warning: caught exception 'Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx', memory monitor disabled
Loading weights [6ce0161689] from D:\system\Documents\SD\stable-diffusion-webui\models\Stable-diffusion\v1-5-pruned-emaonly.safetensors
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.
Creating model from config: D:\system\Documents\SD\stable-diffusion-webui\configs\v1-inference.yaml
Startup time: 10.6s (prepare environment: 0.4s, import torch: 3.6s, import gradio: 1.1s, setup paths: 1.0s, initialize shared: 0.5s, other imports: 0.7s, setup codeformer: 0.1s, load scripts: 2.4s, create ui: 0.4s, gradio launch: 0.4s).
Applying attention optimization: InvokeAI... done.
Model loaded in 3.5s (load weights from disk: 0.6s, create model: 0.3s, apply weights to model: 2.4s, calculate empty prompt: 0.1s).
{}
Loading weights [6ce0161689] from D:\system\Documents\SD\stable-diffusion-webui\models\Stable-diffusion\v1-5-pruned-emaonly.safetensors
OpenVINO Script:  created model from config : D:\system\Documents\SD\stable-diffusion-webui\configs\v1-inference.yaml
  0%|                                                                                           | 0/20 [00:00<?, ?it/s][2023-12-09 18:52:21,913] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,260] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,295] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,326] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,504] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,562] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,601] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,821] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:22,858] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py <function Conv2d.forward at 0x000001EF7F8DD900> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:23,059] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
[2023-12-09 18:52:23,115] torch._dynamo.symbolic_convert: [WARNING] D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py <function Linear.forward at 0x000001EF7F8DC280> [UserDefinedObjectVariable(LoraPatches), NNModuleVariable(), TensorVariable()] {} too many positional arguments
list index out of range
Traceback (most recent call last):
  File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 200, in openvino_fx
    compiled_model = openvino_compile_cached_model(maybe_fs_cached_name, *example_inputs)
  File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 426, in openvino_compile_cached_model
    om.inputs[idx].get_node().set_element_type(dtype_mapping[input_data.dtype])
IndexError: list index out of range

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 147, in run_node
    result = super().run_node(n)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 177, in run_node
    return getattr(self, n.op)(n.target, args, kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 294, in call_module
    return submod(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 459, in network_GroupNorm_forward
    return originals.GroupNorm_forward(self, input)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\normalization.py", line 273, in forward
    return F.group_norm(
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2526, in group_norm
    return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\overrides.py", line 1534, in handle_torch_function
    result = mode.__torch_function__(public_api, types, args, kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\overrides.py", line 38, in __torch_function__
    return func(*args, **kwargs)
  File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2530, in group_norm
    return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: Expected weight to be a vector of size equal to the number of channels in input, but got weight of shape [320] and input of shape [2, 1280]
  0%|                                                                                           | 0/20 [00:01<?, ?it/s]
*** Error completing request
*** Arguments: ('task(av52dfc5c5rmdah)', 'tree', '', [], 20, 'DPM++ 2M Karras', 1, 1, 7, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', '', '', [], <gradio.routes.Request object at 0x000001EF3F382B00>, 1, False, '', 0.8, -1, False, -1, 0, 0, 0, 'None', 'None', 'CPU', True, 'Euler a', True, False, 'None', 0.8, False, False, 'positive', 'comma', 0, False, False, '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, False) {}
    Traceback (most recent call last):
      File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 200, in openvino_fx
        compiled_model = openvino_compile_cached_model(maybe_fs_cached_name, *example_inputs)
      File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 426, in openvino_compile_cached_model
        om.inputs[idx].get_node().set_element_type(dtype_mapping[input_data.dtype])
    IndexError: list index out of range

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last):
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 147, in run_node
        result = super().run_node(n)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 177, in run_node
        return getattr(self, n.op)(n.target, args, kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 294, in call_module
        return submod(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 459, in network_GroupNorm_forward
        return originals.GroupNorm_forward(self, input)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\normalization.py", line 273, in forward
        return F.group_norm(
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2526, in group_norm
        return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\overrides.py", line 1534, in handle_torch_function
        result = mode.__torch_function__(public_api, types, args, kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\overrides.py", line 38, in __torch_function__
        return func(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\functional.py", line 2530, in group_norm
        return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)
    RuntimeError: Expected weight to be a vector of size equal to the number of channels in input, but got weight of shape [320] and input of shape [2, 1280]

    The above exception was the direct cause of the following exception:

    Traceback (most recent call last):
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 670, in call_user_compiler
        compiled_fn = compiler_fn(gm, self.fake_example_inputs())
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\debug_utils.py", line 1055, in debug_wrapper
        compiled_gm = compiler_fn(gm, example_inputs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\backends\common.py", line 107, in wrapper
        return fn(model, inputs, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 233, in openvino_fx
        return compile_fx(subgraph, example_inputs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\compile_fx.py", line 415, in compile_fx
        model_ = overrides.fuse_fx(model_, example_inputs_)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\overrides.py", line 96, in fuse_fx
        gm = mkldnn_fuse_fx(gm, example_inputs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_inductor\mkldnn.py", line 509, in mkldnn_fuse_fx
        ShapeProp(gm, fake_mode=fake_mode).propagate(*example_inputs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 185, in propagate
        return super().run(*args)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\interpreter.py", line 136, in run
        self.env[node] = self.run_node(node)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\fx\passes\shape_prop.py", line 152, in run_node
        raise RuntimeError(
    RuntimeError: ShapeProp error for: node=%self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {}) with meta={'nn_module_stack': {'self_norm1': <class 'torch.nn.modules.normalization.GroupNorm'>}, 'stack_trace': '  File "D:\\system\\Documents\\SD\\stable-diffusion-webui\\venv\\lib\\site-packages\\diffusers\\models\\resnet.py", line 691, in forward\n    hidden_states = self.norm1(hidden_states)\n'}

    While executing %self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {})
    Original traceback:
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\resnet.py", line 691, in forward
        hidden_states = self.norm1(hidden_states)


    The above exception was the direct cause of the following exception:

    Traceback (most recent call last):
      File "D:\system\Documents\SD\stable-diffusion-webui\modules\call_queue.py", line 57, in f
        res = list(func(*args, **kwargs))
      File "D:\system\Documents\SD\stable-diffusion-webui\modules\call_queue.py", line 36, in f
        res = func(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\modules\txt2img.py", line 52, in txt2img
        processed = modules.scripts.scripts_txt2img.run(p, *args)
      File "D:\system\Documents\SD\stable-diffusion-webui\modules\scripts.py", line 601, in run
        processed = script.run(p, *script_args)
      File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 1228, in run
        processed = process_images_openvino(p, model_config, vae_ckpt, p.sampler_name, enable_caching, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac)
      File "D:\system\Documents\SD\stable-diffusion-webui\scripts\openvino_accelerate.py", line 979, in process_images_openvino
        output = shared.sd_diffusers_model(
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
        return func(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stable_diffusion.py", line 840, in __call__
        noise_pred = self.unet(
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\eval_frame.py", line 82, in forward
        return self.dynamo_ctx(self._orig_mod.forward)(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\eval_frame.py", line 209, in _fn
        return fn(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 924, in forward
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 1066, in <graph break in forward>
        sample, res_samples = downsample_block(
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_blocks.py", line 1159, in forward
        hidden_states = resnet(hidden_states, temb, scale=lora_scale)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
        return forward_call(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\eval_frame.py", line 337, in catch_errors
        return callback(frame, cache_size, hooks)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 404, in _convert_frame
        result = inner_convert(frame, cache_size, hooks)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 104, in _fn
        return fn(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 262, in _convert_frame_assert
        return _compile(
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\utils.py", line 163, in time_wrapper
        r = func(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 324, in _compile
        out_code = transform_code_object(code, transform)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\bytecode_transformation.py", line 445, in transform_code_object
        transformations(instructions, code_options)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\convert_frame.py", line 311, in transform
        tracer.run()
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 1726, in run
        super().run()
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 576, in run
        and self.step()
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 540, in step
        getattr(self, inst.opname)(inst)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\symbolic_convert.py", line 372, in wrapper
        self.output.compile_subgraph(self, reason=reason)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 541, in compile_subgraph
        self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 588, in compile_and_call_fx_graph
        compiled_fn = self.call_user_compiler(gm)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\utils.py", line 163, in time_wrapper
        r = func(*args, **kwargs)
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\torch\_dynamo\output_graph.py", line 675, in call_user_compiler
        raise BackendCompilerFailed(self.compiler_fn, e) from e
    torch._dynamo.exc.BackendCompilerFailed: openvino_fx raised RuntimeError: ShapeProp error for: node=%self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {}) with meta={'nn_module_stack': {'self_norm1': <class 'torch.nn.modules.normalization.GroupNorm'>}, 'stack_trace': '  File "D:\\system\\Documents\\SD\\stable-diffusion-webui\\venv\\lib\\site-packages\\diffusers\\models\\resnet.py", line 691, in forward\n    hidden_states = self.norm1(hidden_states)\n'}

    While executing %self_norm1 : [#users=1] = call_module[target=self_norm1](args = (%input_tensor,), kwargs = {})
    Original traceback:
      File "D:\system\Documents\SD\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\resnet.py", line 691, in forward
        hidden_states = self.norm1(hidden_states)


    Set torch._dynamo.config.verbose=True for more information


    You can suppress this exception and fall back to eager by setting:
        torch._dynamo.config.suppress_errors = True


---

Additional information

No response

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant