forked from deeppavlov/dream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunused_skills.yml
172 lines (167 loc) · 4.36 KB
/
unused_skills.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
services:
aiml:
build:
args:
skill_endpoint: aiml
skillconfig: skills/aiml/aiml_skill.json
skillhost: 0.0.0.0
skillport: 2080
context: ./
dockerfile: dp/dockerfile_skill_cpu
environment:
- CUDA_VISIBLE_DEVICES=""
ports:
- 2080:2080
transfertransfo:
build:
context: ./skills/transfertransfo/
environment:
DEVICE: cuda
command: gunicorn --workers=1 server:app -b 0.0.0.0:8007 -t 60
volumes: []
deploy:
mode: replicated
replicas: 1
placement:
constraints:
- node.labels.with_gpu == true
retrieval_chitchat:
build:
context: ./skills/retrieval_chitchat/
command: uvicorn server:app --host 0.0.0.0 --port 8015
volumes: []
deploy:
mode: replicated
replicas: 1
placement:
constraints:
- node.labels.with_gpu != true
convert_reddit_with_personality:
build:
context: ./skills/convert_reddit_with_personality/
command: gunicorn --workers=1 server:app -b 0.0.0.0:8048 -t 60
volumes: []
deploy:
mode: replicated
replicas: 2
placement:
constraints:
- node.labels.with_gpu != true
news_skill:
build:
context: .
dockerfile: ./skills/alexa-prize-news/Dockerfile
command: bash -c "python updater.py | gunicorn --workers=1 server:app -b 0.0.0.0:8027 -t 300"
volumes: []
deploy:
mode: replicated
replicas: 1
placement:
constraints:
- node.labels.with_gpu != true
topicalchat_convert_retrieval:
build:
context: ./skills/topicalchat_convert_retrieval/
command: gunicorn --workers=1 server:app -b 0.0.0.0:8060 -t 60
volumes: []
deploy:
mode: replicated
replicas: 2
placement:
constraints:
- node.labels.with_gpu != true
- node.labels.group == 0
reddit_ner_skill:
build:
context: .
dockerfile: ./skills/reddit_ner_skill/Dockerfile
command: gunicorn --workers=2 server:app -b 0.0.0.0:8035
deploy:
mode: replicated
replicas: 2
placement:
constraints:
- node.labels.with_gpu != true
question-generator:
build:
context: ./services/question_generator/
args:
MODEL_URL: http://lnsigo.mipt.ru/export/alexaprize_data/question_generator/model_24_0.94_37.23.pth
command: gunicorn --workers=1 --timeout 300 server:app -b 0.0.0.0:8079
environment:
- CUDA_VISIBLE_DEVICES=0
- DECODING=greedy
deploy:
mode: replicated
replicas: 1
resources:
limits:
memory: 3G
reservations:
memory: 3G
speech-function-classifier:
build:
args:
SERVICE_PORT: 8108
SERVICE_NAME: speech_function_classifier # has to be the same with skill dir name
context: ./annotators/speech_function_classifier/
command: uvicorn server:app --reload --host 0.0.0.0 --port 8108
deploy:
mode: replicated
replicas: 2
resources:
limits:
memory: 768M
reservations:
memory: 768M
speech-function-predictor:
build:
args:
SERVICE_PORT: 8107
SERVICE_NAME: speech_function_predictor # has to be the same with skill dir name
context: ./annotators/speech_function_predictor/
command: uvicorn server:app --reload --host 0.0.0.0 --port 8107
deploy:
mode: replicated
replicas: 2
resources:
limits:
memory: 768M
reservations:
memory: 768M
wikidata-dial-skill:
build:
args:
SERVICE_PORT: 8091
context: skills/wikidata_dial_skill
command: flask run -h 0.0.0.0 -p 8091
environment:
- FLASK_APP=server
deploy:
mode: replicated
replicas: 1
resources:
limits:
memory: 256M
reservations:
memory: 256M
wikidata-dial-service:
build:
args:
CONFIG: kg_dial_generator.json
SERVICE_PORT: 8092
COMMIT: 5dac85a06fde0e2983c7569ae058e3bf2d45ce2c
context: services/wikidata_dial_service
command: flask run -h 0.0.0.0 -p 8092
environment:
- CUDA_VISIBLE_DEVICES=0
- FLASK_APP=server
deploy:
mode: replicated
replicas: 1
resources:
limits:
memory: 10G
reservations:
memory: 10G
version: '3.7'