-
Notifications
You must be signed in to change notification settings - Fork 5
/
orchest_examples_data.json
390 lines (390 loc) · 14.5 KB
/
orchest_examples_data.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
{
"creation_time": "2023-08-31T18:02:54.037850",
"entries": [
{
"description": "A quickstart pipeline that trains some simple models in parallel.",
"forks_count": 12,
"owner": "orchest",
"stargazers_count": 15,
"tags": [
"quickstart",
"machine-learning",
"training",
"scikit-learn"
],
"title": "Quickstart Pipeline",
"url": "https://github.com/orchest/quickstart"
},
{
"description": "This is a hello world example of how to run (Py)Spark locally in Orchest, it also contains code for connecting to a remote Spark cluster.",
"forks_count": 2,
"owner": "ricklamers",
"stargazers_count": 1,
"tags": [
"pyspark",
"spark",
"cluster"
],
"title": "Run PySpark in Orchest",
"url": "https://github.com/ricklamers/orchest-hello-spark"
},
{
"description": "Scrape webpages with Selenium",
"forks_count": 0,
"owner": "ricklamers",
"stargazers_count": 0,
"tags": [
"scraping",
"selenium"
],
"title": "Using Selenium with Python in Orchest",
"url": "https://github.com/ricklamers/orchest-selenium-example"
},
{
"description": "A minimal example of how to fetch Google Search Console data through their Python API.",
"forks_count": 0,
"owner": "ricklamers",
"stargazers_count": 0,
"tags": [
"api",
"google"
],
"title": "Google Search Console API",
"url": "https://github.com/ricklamers/orchest-search-console-api-example"
},
{
"description": "A minimal example of how to use a fileystem based global key value store, it uses a simple Python dictionary with SQLite as the backing store.",
"forks_count": 1,
"owner": "orchest-examples",
"stargazers_count": 0,
"tags": [
"utility"
],
"title": "Global Key Value store",
"url": "https://github.com/orchest-examples/global-key-value-store"
},
{
"description": "Use dbt inside of Orchest for your materialized views.",
"forks_count": 3,
"owner": "ricklamers",
"stargazers_count": 6,
"tags": [
"python",
"dbt",
"sql"
],
"title": "Orchest + dbt",
"url": "https://github.com/ricklamers/orchest-dbt"
},
{
"description": "Generate an audio snippet from a text sample and send it as a message on Slack/Discord.",
"forks_count": 4,
"owner": "ricklamers",
"stargazers_count": 6,
"tags": [
"tts",
"audio",
"machine-learning"
],
"title": "Coqui TTS",
"url": "https://github.com/ricklamers/orchest-coqui-tts"
},
{
"description": "An example of how to use Redis and Postgres in an Orchest pipeline.",
"forks_count": 2,
"owner": "ricklamers",
"stargazers_count": 0,
"tags": [
"postgres",
"services"
],
"title": "Redis and Postgres",
"url": "https://github.com/ricklamers/orchest-redis-postgres"
},
{
"description": "Search scraped comments with semantic vector search.",
"forks_count": 1,
"owner": "ricklamers",
"stargazers_count": 10,
"tags": [
"nlp",
"streamlit",
"search",
"scraping"
],
"title": "Weaviate + Orchest",
"url": "https://github.com/ricklamers/orchest-weaviate-tweakers-search"
},
{
"description": "An example pipeline showing how to use multiple languages in a same Orchest pipeline.",
"forks_count": 1,
"owner": "ricklamers",
"stargazers_count": 2,
"tags": [
"environments",
"julia",
"r",
"python"
],
"title": "Polyglot: Python, Julia and R in one pipeline",
"url": "https://github.com/ricklamers/orchest-multi-language-pipeline"
},
{
"description": "A pipeline that uses the open source Photon library for webscraping. Use this as a starting point for a data ingest pipeline.",
"forks_count": 2,
"owner": "ricklamers",
"stargazers_count": 1,
"tags": [
"scraping"
],
"title": "Web Scraping using Photon",
"url": "https://github.com/ricklamers/photon-orchest-pipeline"
},
{
"description": "Use web scraping, Meilisearch and PyWebIO for lightning fast comment search on HN.",
"forks_count": 2,
"owner": "ricklamers",
"stargazers_count": 2,
"tags": [
"python",
"pywebio",
"scraping"
],
"title": "Search HN comments with PyWebIO",
"url": "https://github.com/ricklamers/orchest-meilisearch-pywebio-hn"
},
{
"description": "A pipeline showcasing how Python and R can be used within the same pipeline. It also shows how you can call the Orchest SDK from within R.",
"forks_count": 1,
"owner": "orchest-examples",
"stargazers_count": 0,
"tags": [
"r",
"python"
],
"title": "Mixing R and Python in one pipeline",
"url": "https://github.com/orchest-examples/orchest-pipeline-r-python-mix"
},
{
"description": "An example pipeline that uses PyCall to be able to call the Orchest SDK from within Julia.",
"forks_count": 2,
"owner": "orchest-examples",
"stargazers_count": 0,
"tags": [
"julia"
],
"title": "Calling the Orchest SDK from Julia",
"url": "https://github.com/orchest-examples/julia-orchest-sdk"
},
{
"description": "Specific example of using the QuickBooks OAuth API in Orchest, but can be used for any OAuth 2.0 authentication flow.",
"forks_count": 2,
"owner": "ricklamers",
"stargazers_count": 0,
"tags": [
"python",
"oauth",
"finance"
],
"title": "OAuth QuickBooks example project",
"url": "https://github.com/ricklamers/orchest-quickbooks-oauth"
},
{
"description": "This is an example project that demonstrates how to create a pipeline that consists of two phases of execution.",
"forks_count": 2,
"owner": "ricklamers",
"stargazers_count": 1,
"tags": [
"python",
"streamlit"
],
"title": "Two phase pipeline + Streamlit",
"url": "https://github.com/ricklamers/two-phase-pipeline-streamlit"
},
{
"description": "This pipeline classifies random text paragraphs found on websites linked to from random Wikipedia pages.",
"forks_count": 1,
"owner": "ricklamers",
"stargazers_count": 0,
"tags": [
"python",
"scraping",
"streamlit"
],
"title": "Scraped language classifier",
"url": "https://github.com/ricklamers/orchest-language-classifier"
},
{
"description": "Use popular python library, Deep_AutoViML to build multiple deep learning Keras models on any dataset, any size with this pipeline. Data must be in data folder and models are saved in your project folder.",
"forks_count": 2,
"owner": "rsesha",
"stargazers_count": 7,
"tags": [
"quickstart",
"keras",
"machine-learning",
"tensorflow"
],
"title": "Deep_AutoViML Pipeline",
"url": "https://github.com/rsesha/deep_autoviml_pipeline"
},
{
"description": "Use popular python library, AutoViz to visualize any dataset, any size with this pipeline. Data must be in data folder and charts are saved in AutoViz_Plots fodler.",
"forks_count": 3,
"owner": "rsesha",
"stargazers_count": 6,
"tags": [
"quickstart",
"auto-visualization",
"machine-learning"
],
"title": "AutoViz Pipeline",
"url": "https://github.com/rsesha/autoviz_pipeline"
},
{
"description": "Spin up a Coiled cluster and run an xgboost train loop on it. Separate Coiled cluster creation step to make it re-usable.",
"forks_count": 0,
"owner": "ricklamers",
"stargazers_count": 0,
"tags": [
"dask",
"coiled",
"xgboost",
"machine-learning"
],
"title": "Orchest + Coiled: spawn cluster and run XGBoost",
"url": "https://github.com/ricklamers/orchest-coiled-cluster-xgboost"
},
{
"description": "Experimenting with PyArrow in Orchest",
"forks_count": 0,
"owner": "astrojuanlu",
"stargazers_count": 2,
"tags": [
"arrow",
"pyarrow"
],
"title": "Experimenting with PyArrow",
"url": "https://github.com/astrojuanlu/orchest-pyarrow"
},
{
"description": "Out-of-core processing with Vaex in Orchest",
"forks_count": 0,
"owner": "astrojuanlu",
"stargazers_count": 0,
"tags": [
"vaex",
"parquet"
],
"title": "Out-of-core processing with Vaex",
"url": "https://github.com/astrojuanlu/orchest-vaex"
},
{
"description": "Connecting to an external database using SQLAlchemy",
"forks_count": 2,
"owner": "astrojuanlu",
"stargazers_count": 4,
"tags": [
"sqlalchemy",
"postgresql",
"databases"
],
"title": "Connecting to an external database using SQLAlchemy",
"url": "https://github.com/astrojuanlu/orchest-sqlalchemy"
},
{
"description": "Reading +1M Stack Overflow questions with Polars",
"forks_count": 0,
"owner": "astrojuanlu",
"stargazers_count": 2,
"tags": [
"polars",
"dataframes",
"pandas"
],
"title": "Reading +1M Stack Overflow questions with Polars",
"url": "https://github.com/astrojuanlu/orchest-polars"
},
{
"description": "Running SQL statements directly in Jupyter using ipython-sql",
"forks_count": 1,
"owner": "astrojuanlu",
"stargazers_count": 2,
"tags": [
"postgresql",
"databases",
"sql"
],
"title": "Running SQL statements directly in Jupyter using ipython-sql",
"url": "https://github.com/astrojuanlu/orchest-ipython-sql"
},
{
"description": "Creating an ELT pipeline in Orchest that extracts data from PostgreSQL and loads it to BigQuery using meltano and dbt",
"forks_count": 0,
"owner": "astrojuanlu",
"stargazers_count": 1,
"tags": [
"elt",
"pipeline",
"meltano",
"dbt",
"bigquery"
],
"title": "ELT pipeline in Orchest with meltano and dbt",
"url": "https://github.com/astrojuanlu/orchest-elt-meltano-dbt"
},
{
"description": "Export the raw events generated by Google Analytics 4 to your data warehouse, using Orchest for orchestration, Meltano for Extraction & Loading (EL), and Metabase for visualization",
"forks_count": 0,
"owner": "astrojuanlu",
"stargazers_count": 0,
"tags": [
"elt",
"pipeline",
"meltano",
"google-analytics"
],
"title": "Make the most of your Google Analytics data with Orchest and Meltano",
"url": "https://github.com/astrojuanlu/orchest-google-analytics"
},
{
"description": "Create a pipeline that loads time series data from Clarify, trains an anomaly detection model, writes back the anomalies, and notifies you",
"forks_count": 1,
"owner": "astrojuanlu",
"stargazers_count": 2,
"tags": [
"pipeline",
"clarify",
"time-series",
"anomaly-detection"
],
"title": "Detect anomalies on your time series data with Orchest and Clarify",
"url": "https://github.com/astrojuanlu/orchest-timeseries-clarify"
},
{
"description": "Create a drift report using Evidently",
"forks_count": 1,
"owner": "ricklamers",
"stargazers_count": 1,
"tags": [
"drift",
"evidently"
],
"title": "Drift report with Evidently",
"url": "https://github.com/ricklamers/orchest-hello-evidently"
},
{
"description": "Analyze +4.6M Reddit comments with DuckDB from Parquet files",
"forks_count": 1,
"owner": "astrojuanlu",
"stargazers_count": 3,
"tags": [
"duckdb",
"sql",
"arrow"
],
"title": "Analyzing +4.6M Reddit comments with DuckDB",
"url": "https://github.com/astrojuanlu/orchest-duckdb"
}
]
}