-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathEmbedding.lua
53 lines (44 loc) · 1.58 KB
/
Embedding.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
--[[
Copyright 2014 Google Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--
local Embedding, parent = torch.class('Embedding', 'nn.Module')
function Embedding:__init(inputSize, outputSize)
parent.__init(self)
self.outputSize = outputSize
self.weight = torch.Tensor(inputSize, outputSize)
self.gradWeight = torch.Tensor(inputSize, outputSize)
end
function Embedding:updateOutput(input)
self.output:resize(input:size(1), self.outputSize)
for i = 1, input:size(1) do
self.output[i]:copy(self.weight[input[i]])
end
return self.output
end
function Embedding:updateGradInput(input, gradOutput)
if self.gradInput then
self.gradInput:resize(input:size())
return self.gradInput
end
end
function Embedding:accGradParameters(input, gradOutput, scale)
scale = scale or 1
if scale == 0 then
self.gradWeight:zero()
end
for i = 1, input:size(1) do
local word = input[i]
self.gradWeight[word]:add(gradOutput[i])
end
end
-- we do not need to accumulate parameters when sharing
Embedding.sharedAccUpdateGradParameters = Embedding.accUpdateGradParameters